Research on reactor refueling optimization using KAADPN integrated probability distribution guided heuristic algorithm
This study addresses the refueling optimization problem for reactors, selecting the effective multiplication factor as the metric for evaluating loading schemes. The Characteristic Statistical Simulated Annealing and Characteristic Statistical Genetic Algorithm are proposed, which significantly enha...
Saved in:
| Published in: | Annals of nuclear energy Vol. 226; p. 111862 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.02.2026
|
| Subjects: | |
| ISSN: | 0306-4549 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | This study addresses the refueling optimization problem for reactors, selecting the effective multiplication factor as the metric for evaluating loading schemes. The Characteristic Statistical Simulated Annealing and Characteristic Statistical Genetic Algorithm are proposed, which significantly enhance the exploration of the solution space and improve the global search capability. The Kolmogorov-Arnold Attention Dual-Path Network (KAADPN) is introduced, combining the function modeling ability of KAN with the global feature capture of the self-attention mechanism. This significantly improves the model’s prediction accuracy while enhancing its computational efficiency. By establishing a surrogate model for core physics calculations and integrating it with optimization algorithms, pseudo-equilibrium optimization analysis is conducted. The effectiveness of the algorithms is compared through single-cycle optimization case studies, and preliminary no-shuffling optimization verification is performed, resulting in ideal core fuel loading schemes. This validates the feasibility of the method and provides a new tool for efficiently addressing the refueling optimization problem.
•Integration of KAN and attention mechanism for modeling.•Dual-Path network architecture for enhanced model stability.•Statistical historical data through probability table induction.•Overcame heuristic algorithm limits with prob tables from historical data.•Devised a method merging heuristics algorithm with KAADPN for fast reactor refueling. |
|---|---|
| AbstractList | This study addresses the refueling optimization problem for reactors, selecting the effective multiplication factor as the metric for evaluating loading schemes. The Characteristic Statistical Simulated Annealing and Characteristic Statistical Genetic Algorithm are proposed, which significantly enhance the exploration of the solution space and improve the global search capability. The Kolmogorov-Arnold Attention Dual-Path Network (KAADPN) is introduced, combining the function modeling ability of KAN with the global feature capture of the self-attention mechanism. This significantly improves the model’s prediction accuracy while enhancing its computational efficiency. By establishing a surrogate model for core physics calculations and integrating it with optimization algorithms, pseudo-equilibrium optimization analysis is conducted. The effectiveness of the algorithms is compared through single-cycle optimization case studies, and preliminary no-shuffling optimization verification is performed, resulting in ideal core fuel loading schemes. This validates the feasibility of the method and provides a new tool for efficiently addressing the refueling optimization problem.
•Integration of KAN and attention mechanism for modeling.•Dual-Path network architecture for enhanced model stability.•Statistical historical data through probability table induction.•Overcame heuristic algorithm limits with prob tables from historical data.•Devised a method merging heuristics algorithm with KAADPN for fast reactor refueling. |
| ArticleNumber | 111862 |
| Author | Sun, Yanpeng Ma, Xubo |
| Author_xml | – sequence: 1 givenname: Yanpeng surname: Sun fullname: Sun, Yanpeng – sequence: 2 givenname: Xubo surname: Ma fullname: Ma, Xubo email: maxb@ncepu.edu.cn |
| BookMark | eNqFkM1qwzAQhHVIoUnaRyj4BexKtvyTUwnpLw1tKe1ZrOWVsyGRgyQH0qev0-Te08AMM-x-EzaynUXGbgRPBBfF7ToB22u0mKQ8zRMhRFWkIzbmGS9imcvZJZt4v-ZcpJWUY7b_RI_g9CrqbOQQdOjcoKbHDdk26naBtvQDgYa490frdT6__3iLyAZsHQRsop3raqhpQ-EQNeSDo7r_K7Q9NUO-wt4NNukINm3nKKy2V-zCwMbj9Vmn7Pvx4WvxHC_fn14W82WsRSlDnEEhYVaZFEqs0lJzIdFkAGCqWvDC5FBJAQg8L0zWYFpleZaVsjagec0bzKYsP-1q13k__KV2jrbgDkpwdQSm1uoMTB2BqROwoXd36uFw3J7QKa8JrcaGHOqgmo7-WfgF-c1-tA |
| Cites_doi | 10.1016/j.anucene.2008.03.002 10.1007/s41365-024-01564-5 10.1016/j.net.2024.05.025 10.1016/j.physletb.2024.138825 10.1016/j.anucene.2022.109028 10.1016/j.anucene.2022.109656 10.1016/j.net.2023.05.005 10.1016/0029-5493(92)90273-X 10.1007/s007780050040 10.1016/j.nucengdes.2025.114045 10.1007/BF00344251 10.1016/j.nucengdes.2023.112622 10.1016/j.anucene.2011.01.009 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.anucene.2025.111862 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| ExternalDocumentID | 10_1016_j_anucene_2025_111862 S0306454925006796 |
| GroupedDBID | --K --M -~X .GJ .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JM 9JN A6W AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABJNI ABLST ABMAC ABWVN ABXDB ACDAQ ACGFS ACLOT ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SPD SSJ SSR SSZ T5K UHS WUQ ~G- ~HD 9DU AAYXX CITATION |
| ID | FETCH-LOGICAL-c174t-3a64a98f2a7e827c014ef3aaaf8b106f5a841aea056f3de28353374bfac0b0de3 |
| ISSN | 0306-4549 |
| IngestDate | Sat Nov 29 07:08:16 EST 2025 Sat Nov 15 16:52:46 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Attention mechanism KAN Heuristic algorithms Refueling optimization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c174t-3a64a98f2a7e827c014ef3aaaf8b106f5a841aea056f3de28353374bfac0b0de3 |
| ParticipantIDs | crossref_primary_10_1016_j_anucene_2025_111862 elsevier_sciencedirect_doi_10_1016_j_anucene_2025_111862 |
| PublicationCentury | 2000 |
| PublicationDate | February 2026 2026-02-00 |
| PublicationDateYYYYMMDD | 2026-02-01 |
| PublicationDate_xml | – month: 02 year: 2026 text: February 2026 |
| PublicationDecade | 2020 |
| PublicationTitle | Annals of nuclear energy |
| PublicationYear | 2026 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Steinbrunn, Moerkotte, Kemper (b26) 1997; 6 Meng, Wu, Wu (b23) 2024; 52 Zhang, Li, Shen (b40) 2023 Li, Ma, Ma (b14) 2024; 56 Hu, Ma, Zhang (b10) 2023; 55 Mirjalili (b24) 2019 Li, Xiang, Xia (b15) 2019; 42 Chen, Li, Xiao (b1) 2017 Fukushima (b8) 1980; 36 Yang, Gong, Zhang (b36) 2023; 183 Vaswani, Shazeer, Parmar (b28) 2023 Yu (b39) 2025; 33 De Lima, Schirru, Da Silva (b3) 2008; 35 Yang (b34) 2004 Xing, Sun, Xu (b33) 2024; 855 Liu, Hu, Shi (b18) 2007 Wei, Wang, Wang (b31) 2020; 54 Yang (b35) 2010 Yang, Xu, Wang (b37) 2011; 45 Peng, Chen, Zhu (b25) 2024; 45 Wang, Xin, Zhang (b30) 2025; 41 Xian, Zhang (b32) 2003; 132 Ji, Yang, Zhao (b12) 2023; 44 Liu, Shi, Hu (b20) 2002 Li, Zhou, Ding (b17) 2021; 42 Li, Zhang, Yang (b16) 2024; 21 Zhang, Ma, Ma (b41) 2025; 438 Huang, Ma, Zhu (b11) 2021; 42 De Oliveira, Schirru (b4) 2011; 38 He, Zhang, Ren (b9) 2015 Liu, Ma, Wang (b19) 2024 Yao, Peng, He (b38) 2024; 44 Liu, Wang, Vaidya (b21) 2025 Li, Luo, Wen (b13) 2025; 36 Wan, Lei, Li (b29) 2022; 171 Da Silva, Martinez, Lima (b2) 2023; 414 Fang (b6) 2019 Liu, Zhao, Shi (b22) 2014; 35 Fang, Lu, He (b7) 2025 Devlin, Chang, Lee (b5) 2019 Tan (b27) 2019 Devlin (10.1016/j.anucene.2025.111862_b5) 2019 Wang (10.1016/j.anucene.2025.111862_b30) 2025; 41 Liu (10.1016/j.anucene.2025.111862_b20) 2002 De Lima (10.1016/j.anucene.2025.111862_b3) 2008; 35 Li (10.1016/j.anucene.2025.111862_b13) 2025; 36 Hu (10.1016/j.anucene.2025.111862_b10) 2023; 55 Huang (10.1016/j.anucene.2025.111862_b11) 2021; 42 Li (10.1016/j.anucene.2025.111862_b16) 2024; 21 He (10.1016/j.anucene.2025.111862_b9) 2015 Liu (10.1016/j.anucene.2025.111862_b19) 2024 Yang (10.1016/j.anucene.2025.111862_b37) 2011; 45 Ji (10.1016/j.anucene.2025.111862_b12) 2023; 44 Meng (10.1016/j.anucene.2025.111862_b23) 2024; 52 Xing (10.1016/j.anucene.2025.111862_b33) 2024; 855 Zhang (10.1016/j.anucene.2025.111862_b40) 2023 Yu (10.1016/j.anucene.2025.111862_b39) 2025; 33 Mirjalili (10.1016/j.anucene.2025.111862_b24) 2019 Fang (10.1016/j.anucene.2025.111862_b6) 2019 Xian (10.1016/j.anucene.2025.111862_b32) 2003; 132 Li (10.1016/j.anucene.2025.111862_b15) 2019; 42 Steinbrunn (10.1016/j.anucene.2025.111862_b26) 1997; 6 Li (10.1016/j.anucene.2025.111862_b14) 2024; 56 De Oliveira (10.1016/j.anucene.2025.111862_b4) 2011; 38 Peng (10.1016/j.anucene.2025.111862_b25) 2024; 45 Liu (10.1016/j.anucene.2025.111862_b18) 2007 Wan (10.1016/j.anucene.2025.111862_b29) 2022; 171 Liu (10.1016/j.anucene.2025.111862_b21) 2025 Fang (10.1016/j.anucene.2025.111862_b7) 2025 Tan (10.1016/j.anucene.2025.111862_b27) 2019 Chen (10.1016/j.anucene.2025.111862_b1) 2017 Liu (10.1016/j.anucene.2025.111862_b22) 2014; 35 Vaswani (10.1016/j.anucene.2025.111862_b28) 2023 Yang (10.1016/j.anucene.2025.111862_b35) 2010 Yang (10.1016/j.anucene.2025.111862_b34) 2004 Yao (10.1016/j.anucene.2025.111862_b38) 2024; 44 Yang (10.1016/j.anucene.2025.111862_b36) 2023; 183 Fukushima (10.1016/j.anucene.2025.111862_b8) 1980; 36 Da Silva (10.1016/j.anucene.2025.111862_b2) 2023; 414 Wei (10.1016/j.anucene.2025.111862_b31) 2020; 54 Zhang (10.1016/j.anucene.2025.111862_b41) 2025; 438 Li (10.1016/j.anucene.2025.111862_b17) 2021; 42 |
| References_xml | – volume: 438 year: 2025 ident: b41 article-title: Validation of the neutron cross section processing code MGGC3.0 via JOYO-70 reactor physics experiments publication-title: Nucl. Eng. Des. – year: 2024 ident: b19 article-title: KAN 2.0: Kolmogorov-Arnold networks meet science – year: 2025 ident: b21 article-title: KAN: Kolmogorov-Arnold networks – volume: 44 start-page: 64 year: 2023 end-page: 70 ident: b12 article-title: Study on prediction method for accident parameters of leadbismuth reactor based on coupling multivariable LSTM and optimization algorithm publication-title: Nucl. Power Eng. – start-page: 125 year: 2023 end-page: 127 ident: b40 article-title: Technical status of the fourth generation reactor-sodium cooled fast reactor (SFR) publication-title: China Plant Eng. – year: 2019 ident: b6 article-title: Research on Design and Optimization of Core Fuel Management Schemes for the Lead-Cooled Fast Reactor M2LFR-1000 – volume: 42 start-page: 23 year: 2021 end-page: 29 ident: b17 article-title: Comparative analysis of genetic algorithms based on different selection strategies for refueling optimization in the ratio method publication-title: Nucl. Power Eng. – volume: 414 year: 2023 ident: b2 article-title: Simplified model for nuclear reactor core loading pattern optimization publication-title: Nucl. Eng. Des. – year: 2023 ident: b28 article-title: Attention is all you need – volume: 183 year: 2023 ident: b36 article-title: A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems publication-title: Ann. Nucl. Energy – volume: 36 start-page: 193 year: 1980 end-page: 202 ident: b8 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybernet. – volume: 21 start-page: 1 year: 2024 end-page: 8 ident: b16 article-title: Parametric modeling of electromagnetic behavior in vertical transitions based on neural networks publication-title: Space Electron. Technol. – start-page: 1 year: 2007 end-page: 5+10 ident: b18 article-title: Algorithm research on PWR multi-cycle refueling design optimization publication-title: Nucl. Sci. Eng. – volume: 45 start-page: 173 year: 2024 end-page: 180 ident: b25 article-title: Research on optimization of core power regulation system of swimming pool reactor based on PSO-BP neural network publication-title: Nucl. Power Eng. – year: 2004 ident: b34 article-title: Level I Probabilistic Safety Assessment for Internal Events During the Design Phase of China Experimental Fast Reactor – start-page: 1 year: 2025 end-page: 10 ident: b7 article-title: Fault diagnosis method for hydroturbine units based on transformer and multimodal heterogeneous feature fusion publication-title: Power Gener. Technol. – volume: 44 start-page: 564 year: 2024 end-page: 571 ident: b38 article-title: Study on the prediction method of key parameters of pressurized water reactor core refueling based on the hierarchical neural network publication-title: Nucl. Sci. Eng. – volume: 42 start-page: 6 year: 2021 end-page: 13 ident: b11 article-title: Development and verification of fast reactor multi-group cross section database processing code MGGC1.0 publication-title: Nucl. Power Eng. – volume: 56 start-page: 4195 year: 2024 end-page: 4206 ident: b14 article-title: VINUS: A neutron transport solver based on the variational nodal method for reactor core analysis publication-title: Nucl. Eng. Technol. – volume: 132 start-page: 117 year: 2003 end-page: 121 ident: b32 article-title: SEDRIO/INCORE, an automatic optimal loading pattern search system for PWR NPP reload core using an expert system publication-title: Nucl. Power Eng. – volume: 38 start-page: 1039 year: 2011 end-page: 1045 ident: b4 article-title: Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization publication-title: Ann. Nucl. Energy. – volume: 42 start-page: 1161 year: 2019 end-page: 1173 ident: b15 article-title: Dynamic system models and convergence analysis for simulated annealing algorithm publication-title: Chinese J. Comput. – volume: 54 start-page: 825 year: 2020 end-page: 834 ident: b31 article-title: Applicationof neural network-genetic composite algorithm in CoreRefueling designfor PWR publication-title: At. Energy Sci. Technol. – year: 2017 ident: b1 article-title: Dual path networks – volume: 171 year: 2022 ident: b29 article-title: Optimization method of fuel-reloading pattern for PWR based on the improved convolutional neural network and genetic algorithm publication-title: Ann. Nucl. Energy – start-page: 580 year: 2002 end-page: 583 ident: b20 article-title: A new global optimization algorithm ——Statistic inductive algorithm publication-title: J. Tsinghua Univ. Technol. – year: 2010 ident: b35 article-title: Research on Optimization of in-Core Fuel Management of Fast Reactor – volume: 55 start-page: 2785 year: 2023 end-page: 2796 ident: b10 article-title: MGGC2.0: A preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library publication-title: Nucl. Eng. Technol. – year: 2019 ident: b27 article-title: Study on Fuel Loading Pattern Optimization for a Pressurized Water Reactor Based on NSGA-II and Machine Learning – volume: 45 start-page: 705 year: 2011 end-page: 709 ident: b37 article-title: Preliminary study of loading patterns optimization without shuffling for equilibrium cycle of China experimental fast reactor publication-title: At. Energy Sci. Technol. – year: 2015 ident: b9 article-title: Deep residual learning for image recognition – volume: 52 start-page: 821 year: 2024 end-page: 826+857 ident: b23 article-title: Traversal path planning of sweeping robot based on memory simulated annealing algorithm publication-title: Comput. Digit. Eng. – volume: 33 start-page: 192 year: 2025 end-page: 196 ident: b39 article-title: Parameter identification method for Magnetorheological damper model based on improved genetic algorithm publication-title: Electron. Des. Eng. – year: 2019 ident: b24 article-title: Evolutionary Algorithms and Neural Networks – volume: 35 start-page: 19 year: 2014 end-page: 22 ident: b22 article-title: Improvement of characteristic statistic algorithm reloading optimization program CSA for actual engineering requirements publication-title: Nucl. Power Eng. – volume: 35 start-page: 1606 year: 2008 end-page: 1612 ident: b3 article-title: A nuclear reactor core fuel reload optimization using artificial ant colony connective networks publication-title: Ann. Nucl. Energy – volume: 36 start-page: 7 year: 2025 ident: b13 article-title: A nuclide identification method of publication-title: Nucl. Sci. Tech. – volume: 855 year: 2024 ident: b33 article-title: Phase shift deep neural network approach for studying resonance cross sections for the 235U(n, f) reaction publication-title: Phys. Lett. B – volume: 6 start-page: 191 year: 1997 end-page: 208 ident: b26 article-title: Heuristic and randomized optimization for the join ordering problem publication-title: VLDB J. Int. J. Very Large Data Bases – volume: 41 start-page: 298 year: 2025 end-page: 311 ident: b30 article-title: Study on tree species identification of planted forests based on PCA-BO-CNN model publication-title: Eng. – year: 2019 ident: b5 article-title: BERT: Pre-training of deep bidirectional transformers for language understanding – volume: 35 start-page: 1606 issue: 9 year: 2008 ident: 10.1016/j.anucene.2025.111862_b3 article-title: A nuclear reactor core fuel reload optimization using artificial ant colony connective networks publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2008.03.002 – volume: 42 start-page: 23 issue: 5 year: 2021 ident: 10.1016/j.anucene.2025.111862_b17 article-title: Comparative analysis of genetic algorithms based on different selection strategies for refueling optimization in the ratio method publication-title: Nucl. Power Eng. – volume: 45 start-page: 705 issue: 6 year: 2011 ident: 10.1016/j.anucene.2025.111862_b37 article-title: Preliminary study of loading patterns optimization without shuffling for equilibrium cycle of China experimental fast reactor publication-title: At. Energy Sci. Technol. – volume: 36 start-page: 7 issue: 1 year: 2025 ident: 10.1016/j.anucene.2025.111862_b13 article-title: A nuclide identification method of γ spectrum and model building based on the transformer publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-024-01564-5 – volume: 56 start-page: 4195 issue: 10 year: 2024 ident: 10.1016/j.anucene.2025.111862_b14 article-title: VINUS: A neutron transport solver based on the variational nodal method for reactor core analysis publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2024.05.025 – volume: 132 start-page: 117 issue: 2 year: 2003 ident: 10.1016/j.anucene.2025.111862_b32 article-title: SEDRIO/INCORE, an automatic optimal loading pattern search system for PWR NPP reload core using an expert system publication-title: Nucl. Power Eng. – year: 2024 ident: 10.1016/j.anucene.2025.111862_b19 – volume: 44 start-page: 64 issue: 5 year: 2023 ident: 10.1016/j.anucene.2025.111862_b12 article-title: Study on prediction method for accident parameters of leadbismuth reactor based on coupling multivariable LSTM and optimization algorithm publication-title: Nucl. Power Eng. – year: 2019 ident: 10.1016/j.anucene.2025.111862_b27 – volume: 33 start-page: 192 issue: 7 year: 2025 ident: 10.1016/j.anucene.2025.111862_b39 article-title: Parameter identification method for Magnetorheological damper model based on improved genetic algorithm publication-title: Electron. Des. Eng. – year: 2019 ident: 10.1016/j.anucene.2025.111862_b24 – volume: 855 year: 2024 ident: 10.1016/j.anucene.2025.111862_b33 article-title: Phase shift deep neural network approach for studying resonance cross sections for the 235U(n, f) reaction publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2024.138825 – volume: 42 start-page: 6 issue: 3 year: 2021 ident: 10.1016/j.anucene.2025.111862_b11 article-title: Development and verification of fast reactor multi-group cross section database processing code MGGC1.0 publication-title: Nucl. Power Eng. – volume: 35 start-page: 19 issue: S2 year: 2014 ident: 10.1016/j.anucene.2025.111862_b22 article-title: Improvement of characteristic statistic algorithm reloading optimization program CSA for actual engineering requirements publication-title: Nucl. Power Eng. – year: 2015 ident: 10.1016/j.anucene.2025.111862_b9 – year: 2023 ident: 10.1016/j.anucene.2025.111862_b28 – volume: 171 year: 2022 ident: 10.1016/j.anucene.2025.111862_b29 article-title: Optimization method of fuel-reloading pattern for PWR based on the improved convolutional neural network and genetic algorithm publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2022.109028 – volume: 183 year: 2023 ident: 10.1016/j.anucene.2025.111862_b36 article-title: A data-enabled physics-informed neural network with comprehensive numerical study on solving neutron diffusion eigenvalue problems publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2022.109656 – volume: 44 start-page: 564 issue: 3 year: 2024 ident: 10.1016/j.anucene.2025.111862_b38 article-title: Study on the prediction method of key parameters of pressurized water reactor core refueling based on the hierarchical neural network publication-title: Nucl. Sci. Eng. – start-page: 580 issue: 5 year: 2002 ident: 10.1016/j.anucene.2025.111862_b20 article-title: A new global optimization algorithm ——Statistic inductive algorithm publication-title: J. Tsinghua Univ. Technol. – year: 2025 ident: 10.1016/j.anucene.2025.111862_b21 – year: 2019 ident: 10.1016/j.anucene.2025.111862_b5 – volume: 55 start-page: 2785 issue: 8 year: 2023 ident: 10.1016/j.anucene.2025.111862_b10 article-title: MGGC2.0: A preprocessing code for the multi-group cross section of the fast reactor with ultrafine group library publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2023.05.005 – volume: 54 start-page: 825 issue: 5 year: 2020 ident: 10.1016/j.anucene.2025.111862_b31 article-title: Applicationof neural network-genetic composite algorithm in CoreRefueling designfor PWR publication-title: At. Energy Sci. Technol. – year: 2004 ident: 10.1016/j.anucene.2025.111862_b34 – volume: 52 start-page: 821 issue: 3 year: 2024 ident: 10.1016/j.anucene.2025.111862_b23 article-title: Traversal path planning of sweeping robot based on memory simulated annealing algorithm publication-title: Comput. Digit. Eng. – start-page: 125 issue: 7 year: 2023 ident: 10.1016/j.anucene.2025.111862_b40 article-title: Technical status of the fourth generation reactor-sodium cooled fast reactor (SFR) publication-title: China Plant Eng. – volume: 41 start-page: 298 issue: 2 year: 2025 ident: 10.1016/j.anucene.2025.111862_b30 article-title: Study on tree species identification of planted forests based on PCA-BO-CNN model publication-title: Eng. – start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.anucene.2025.111862_b18 article-title: Algorithm research on PWR multi-cycle refueling design optimization publication-title: Nucl. Sci. Eng. doi: 10.1016/0029-5493(92)90273-X – year: 2017 ident: 10.1016/j.anucene.2025.111862_b1 – volume: 42 start-page: 1161 issue: 6 year: 2019 ident: 10.1016/j.anucene.2025.111862_b15 article-title: Dynamic system models and convergence analysis for simulated annealing algorithm publication-title: Chinese J. Comput. – volume: 6 start-page: 191 issue: 3 year: 1997 ident: 10.1016/j.anucene.2025.111862_b26 article-title: Heuristic and randomized optimization for the join ordering problem publication-title: VLDB J. Int. J. Very Large Data Bases doi: 10.1007/s007780050040 – start-page: 1 year: 2025 ident: 10.1016/j.anucene.2025.111862_b7 article-title: Fault diagnosis method for hydroturbine units based on transformer and multimodal heterogeneous feature fusion publication-title: Power Gener. Technol. – volume: 438 year: 2025 ident: 10.1016/j.anucene.2025.111862_b41 article-title: Validation of the neutron cross section processing code MGGC3.0 via JOYO-70 reactor physics experiments publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2025.114045 – volume: 45 start-page: 173 issue: 4 year: 2024 ident: 10.1016/j.anucene.2025.111862_b25 article-title: Research on optimization of core power regulation system of swimming pool reactor based on PSO-BP neural network publication-title: Nucl. Power Eng. – year: 2019 ident: 10.1016/j.anucene.2025.111862_b6 – volume: 36 start-page: 193 issue: 4 year: 1980 ident: 10.1016/j.anucene.2025.111862_b8 article-title: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position publication-title: Biol. Cybernet. doi: 10.1007/BF00344251 – volume: 414 year: 2023 ident: 10.1016/j.anucene.2025.111862_b2 article-title: Simplified model for nuclear reactor core loading pattern optimization publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2023.112622 – volume: 21 start-page: 1 issue: 6 year: 2024 ident: 10.1016/j.anucene.2025.111862_b16 article-title: Parametric modeling of electromagnetic behavior in vertical transitions based on neural networks publication-title: Space Electron. Technol. – volume: 38 start-page: 1039 issue: 5 year: 2011 ident: 10.1016/j.anucene.2025.111862_b4 article-title: Swarm intelligence of artificial bees applied to In-Core Fuel Management Optimization publication-title: Ann. Nucl. Energy. doi: 10.1016/j.anucene.2011.01.009 – year: 2010 ident: 10.1016/j.anucene.2025.111862_b35 |
| SSID | ssj0012844 |
| Score | 2.4064438 |
| Snippet | This study addresses the refueling optimization problem for reactors, selecting the effective multiplication factor as the metric for evaluating loading... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 111862 |
| SubjectTerms | Attention mechanism Heuristic algorithms KAN Refueling optimization |
| Title | Research on reactor refueling optimization using KAADPN integrated probability distribution guided heuristic algorithm |
| URI | https://dx.doi.org/10.1016/j.anucene.2025.111862 |
| Volume | 226 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0306-4549 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0012844 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLagA2k8TDCY2BjID7xVgTQ3248VbBoXVZMYqDxFx4m9dWJJ1TbT-PccX3JBTAiQeElaR3Gj87kn5_qZkJeTkkHBszgQWSqDpBA64DIzdHdQ4pdEaZto__KRzWZ8Phenfo_Ntd1OgFUVv7kRy_8KNY4h2KZ19i_g7ibFAfyMoOMRYcfjHwHf1tKZNABahCYoj2fduMbzGlXEle-9HDc2UPBhOn17OuuJIwxxAP7LbdXsd5PB6TbFGp83ixKvX6jGETyP4dt5vVpsLq6GRm5PylwZtmRYjZXtMOwTUFbVfYVqqfyL08bEzeC8kfUwEhF1xctteKxtkenrkWxbVpgZYnUxVLmR65L_RX27SMKl6bou8MnQfY9So9S519g_M2N_MnObqdGMs_Gwu2QrYqngI7I1fXc0f9-lk_Ad7HjE_LP0rVyvb_2x242UgeFx9pDseI-BTh3Sj8gdVe2SBwMeyV1y39bxFuvH5LpFn9YV9ejTDn06RJ9a9KlDn_bo0wH6dIg-dejTDn3aof-EfD4-OntzEvitNYICXdBNEEOWgOA6AqZ4xAp0lJWOAUBzOQkznQJPJqAAzWMdl8qQ8sUxS6SGIpRhqeI9MqrqSj0lVKY8SuOSSZFkiWChBJgkpdLoh6BvINU-edXKMl86BpW8LS28zL3wcyP83Al_n_BW4rk3A515l-My-f2tB_9-6zOy3a_pQzLarBr1nNwrrjeL9eqFX1A_AG0SiyQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+reactor+refueling+optimization+using+KAADPN+integrated+probability+distribution+guided+heuristic+algorithm&rft.jtitle=Annals+of+nuclear+energy&rft.au=Sun%2C+Yanpeng&rft.au=Ma%2C+Xubo&rft.date=2026-02-01&rft.pub=Elsevier+Ltd&rft.issn=0306-4549&rft.volume=226&rft_id=info:doi/10.1016%2Fj.anucene.2025.111862&rft.externalDocID=S0306454925006796 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4549&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4549&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4549&client=summon |