Classical Combinatory Logic
Combinatory logic shows that bound variables can be eliminated without loss of expressiveness. It has applications both in the foundations of mathematics and in the implementation of functional programming languages. The original combinatory calculus corresponds to minimal implicative logic written...
Uložené v:
| Vydané v: | Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings vol. AF,...; číslo Proceedings; s. 87 - 96 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
DMTCS
01.01.2005
Discrete Mathematics and Theoretical Computer Science Discrete Mathematics & Theoretical Computer Science |
| Edícia: | DMTCS Proceedings |
| Predmet: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Combinatory logic shows that bound variables can be eliminated without loss of expressiveness. It has applications both in the foundations of mathematics and in the implementation of functional programming languages. The original combinatory calculus corresponds to minimal implicative logic written in a system "à la Hilbert''. We present in this paper a combinatory logic which corresponds to propositional classical logic. This system is equivalent to the system $λ ^{Sym}_{Prop}$ of Barbanera and Berardi. |
|---|---|
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.46298/dmtcs.3469 |