On the Number of 2-Protected Nodes in Tries and Suffix Trees

We use probabilistic and combinatorial tools on strings to discover the average number of 2-protected nodes in tries and in suffix trees. Our analysis covers both the uniform and non-uniform cases. For instance, in a uniform trie with $n$ leaves, the number of 2-protected nodes is approximately 0.80...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings vol. AQ,...; číslo Proceedings; s. 381 - 398
Hlavní autoři: Gaither, Jeffrey, Homma, Yushi, Sellke, Mark, Ward, Mark Daniel
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: DMTCS 01.01.2012
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Edice:DMTCS Proceedings
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We use probabilistic and combinatorial tools on strings to discover the average number of 2-protected nodes in tries and in suffix trees. Our analysis covers both the uniform and non-uniform cases. For instance, in a uniform trie with $n$ leaves, the number of 2-protected nodes is approximately 0.803$n$, plus small first-order fluctuations. The 2-protected nodes are an emerging way to distinguish the interior of a tree from the fringe.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.3008