On the Number of 2-Protected Nodes in Tries and Suffix Trees
We use probabilistic and combinatorial tools on strings to discover the average number of 2-protected nodes in tries and in suffix trees. Our analysis covers both the uniform and non-uniform cases. For instance, in a uniform trie with $n$ leaves, the number of 2-protected nodes is approximately 0.80...
Uloženo v:
| Vydáno v: | Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings vol. AQ,...; číslo Proceedings; s. 381 - 398 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
DMTCS
01.01.2012
Discrete Mathematics and Theoretical Computer Science Discrete Mathematics & Theoretical Computer Science |
| Edice: | DMTCS Proceedings |
| Témata: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We use probabilistic and combinatorial tools on strings to discover the average number of 2-protected nodes in tries and in suffix trees. Our analysis covers both the uniform and non-uniform cases. For instance, in a uniform trie with $n$ leaves, the number of 2-protected nodes is approximately 0.803$n$, plus small first-order fluctuations. The 2-protected nodes are an emerging way to distinguish the interior of a tree from the fringe. |
|---|---|
| ISSN: | 1365-8050 1462-7264 1365-8050 |
| DOI: | 10.46298/dmtcs.3008 |