Non-representable hyperbolic matroids
The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class of (hyperbolic) matroids which properly contains the class of matroids representable over the complex numbers. This connect...
Gespeichert in:
| Veröffentlicht in: | Discrete mathematics and theoretical computer science Jg. DMTCS Proceedings, 28th... |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article Tagungsbericht |
| Sprache: | Englisch |
| Veröffentlicht: |
DMTCS
22.04.2020
Discrete Mathematics & Theoretical Computer Science |
| Schlagworte: | |
| ISSN: | 1365-8050, 1462-7264, 1365-8050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class of (hyperbolic) matroids which properly contains the class of matroids representable over the complex numbers. This connection was used by the first author to construct counterexamples to algebraic (stronger) versions of the generalized Lax conjecture by considering a non- representable hyperbolic matroid. The Va ́mos matroid and a generalization of it are to this day the only known instances of non-representable hyperbolic matroids. We prove that the Non-Pappus and Non-Desargues matroids are non-representable hyperbolic matroids by exploiting a connection, due to Jordan, between Euclidean Jordan algebras and projective geometries. We further identify a large class of hyperbolic matroids that are parametrized by uniform hypergraphs and prove that many of them are non-representable. Finally we explore consequences to algebraic versions of the generalized Lax conjecture. |
|---|---|
| AbstractList | The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class of (hyperbolic) matroids which properly contains the class of matroids representable over the complex numbers. This connection was used by the first author to construct counterexamples to algebraic (stronger) versions of the generalized Lax conjecture by considering a non- representable hyperbolic matroid. The Va ́mos matroid and a generalization of it are to this day the only known instances of non-representable hyperbolic matroids. We prove that the Non-Pappus and Non-Desargues matroids are non-representable hyperbolic matroids by exploiting a connection, due to Jordan, between Euclidean Jordan algebras and projective geometries. We further identify a large class of hyperbolic matroids that are parametrized by uniform hypergraphs and prove that many of them are non-representable. Finally we explore consequences to algebraic versions of the generalized Lax conjecture. |
| Author | Branden, Petter Amini, Nima |
| Author_xml | – sequence: 1 givenname: Nima orcidid: 0000-0002-2305-9764 surname: Amini fullname: Amini, Nima organization: Department of Mathematics – sequence: 2 givenname: Petter surname: Branden fullname: Branden, Petter organization: Department of Mathematics |
| BackLink | https://hal.science/hal-02173792$$DView record in HAL |
| BookMark | eNpVkE1LAzEQhoNUsK2e_AO9eBDZmq_dJMdS1BYWveg5TL7slu2mJIvQf--2FdHTDMM7zwzPBI262HmEbgme84oq-eh2vc3zilF5gcaEVWUhcYlHf_orNMl5izGhiosxunuNXZH8Pvnsux5M62ebw94nE9vGznbQp9i4fI0uA7TZ3_zUKfp4fnpfror67WW9XNSFJYLJwhmChVIyKC5Ljp103ClciZJbA1JxGoaU8FKUxmHmwJkgifWCWFlJBYRN0frMdRG2ep-aHaSDjtDo0yCmTw2pb2zrNR_4lHqqwHgemDWCEM4GB1AFW4EaWPdn1gbaf6jVotbHGabD00LRr-Pdh3PWpphz8uF3gWB9MqtPZvXRLPsGBbFsJg |
| ContentType | Journal Article Conference Proceeding |
| Copyright | Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES DOA |
| DOI | 10.46298/dmtcs.6328 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1365-8050 |
| ExternalDocumentID | oai_doaj_org_article_440d22e29abe4f3cb71143298a6fc6a9 oai:HAL:hal-02173792v1 10_46298_dmtcs_6328 |
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BAIFH BBTPI BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PV9 REM RNS RSU RZL TR2 TUS XSB ~8M 1XC VOOES |
| ID | FETCH-LOGICAL-c1738-db107998f948540d8d4d906754cba8942f7387e875bd03dadbf81ce71c8689a13 |
| IEDL.DBID | DOA |
| ISSN | 1365-8050 1462-7264 |
| IngestDate | Fri Oct 03 12:29:10 EDT 2025 Tue Oct 14 20:42:02 EDT 2025 Sat Nov 29 02:48:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MeetingName | 28-th International Conference on Formal Power Series and Algebraic Combinatorics |
| MergedId | FETCHMERGED-LOGICAL-c1738-db107998f948540d8d4d906754cba8942f7387e875bd03dadbf81ce71c8689a13 |
| ORCID | 0000-0002-2305-9764 |
| OpenAccessLink | https://doaj.org/article/440d22e29abe4f3cb71143298a6fc6a9 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_440d22e29abe4f3cb71143298a6fc6a9 hal_primary_oai_HAL_hal_02173792v1 crossref_primary_10_46298_dmtcs_6328 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-22 |
| PublicationDateYYYYMMDD | 2020-04-22 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Discrete mathematics and theoretical computer science |
| PublicationYear | 2020 |
| Publisher | DMTCS Discrete Mathematics & Theoretical Computer Science |
| Publisher_xml | – name: DMTCS – name: Discrete Mathematics & Theoretical Computer Science |
| SSID | ssj0012947 ssib044734695 |
| Score | 2.252045 |
| Snippet | The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials... |
| SourceID | doaj hal crossref |
| SourceType | Open Website Open Access Repository Index Database |
| SubjectTerms | [math.math-co]mathematics [math]/combinatorics [math.co] Combinatorics Mathematics |
| Title | Non-representable hyperbolic matroids |
| URI | https://hal.science/hal-02173792 https://doaj.org/article/440d22e29abe4f3cb71143298a6fc6a9 |
| Volume | DMTCS Proceedings, 28th... |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044734695 issn: 1365-8050 databaseCode: M~E dateStart: 19980101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED0hYICBb0T5qCJUxkDimNgeC6IqEq06gART5E-BRFPUlI78ds5OWsHEwpLBspzkXZJ3z47fAXRMzkzOmY2NdDRGvuUxz6SIkY6MMERiRsFDsQk2HPLnZzH6UerL_xNW2wPXwF1RmhhCLBFSWeoyrRhm8BkRXOZO5zJs3UuYWIipZv2ACMrq3Xg0x75XZjzT1WWe-aLrP_gn2PQjq7wuZlEDq_R2YKtJB6NufRm7sGLLPdhelFqImjdvDzYHS3vVah8uhpMyDnaUYeuQerfRK-rJqfImv9HYT2-_meoAnnp3j7f9uKl3EOuU4XfHKNRiKH-cd2zB2-aGGuEzeqqV5IISh72YRYWhTJIZaZTjqbYs1TznQqbZIayWk9IeQaT4tZMaqR4JHzWNUZmj2mjmEhwdSb8FnQUKxUdta1GgHAhgFQGswoPVghuP0LKL96IODRihoolQ8VeEWnCO-P4ao999KHybF0QZE2SeHv_HmU5gg3g5nNCYkFNYnU0_7Rms6_nsrZq2wxOCx8HXXRvWRveD0cs3ToLCgQ |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+mathematics+and+theoretical+computer+science&rft.atitle=Non-representable+hyperbolic+matroids&rft.au=Amini%2C+Nima&rft.au=Branden%2C+Petter&rft.date=2020-04-22&rft.pub=DMTCS&rft.issn=1462-7264&rft.eissn=1365-8050&rft.volume=DMTCS+Proceedings%2C+28th+International+Conference+on+Formal+Power+Series+and+Algebraic+Combinatorics+%28FPSAC+2016%29&rft_id=info:doi/10.46298%2Fdmtcs.6328&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02173792v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |