Non-representable hyperbolic matroids

The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class of (hyperbolic) matroids which properly contains the class of matroids representable over the complex numbers. This connect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science Jg. DMTCS Proceedings, 28th...
Hauptverfasser: Amini, Nima, Branden, Petter
Format: Journal Article Tagungsbericht
Sprache:Englisch
Veröffentlicht: DMTCS 22.04.2020
Discrete Mathematics & Theoretical Computer Science
Schlagworte:
ISSN:1365-8050, 1462-7264, 1365-8050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class of (hyperbolic) matroids which properly contains the class of matroids representable over the complex numbers. This connection was used by the first author to construct counterexamples to algebraic (stronger) versions of the generalized Lax conjecture by considering a non- representable hyperbolic matroid. The Va ́mos matroid and a generalization of it are to this day the only known instances of non-representable hyperbolic matroids. We prove that the Non-Pappus and Non-Desargues matroids are non-representable hyperbolic matroids by exploiting a connection, due to Jordan, between Euclidean Jordan algebras and projective geometries. We further identify a large class of hyperbolic matroids that are parametrized by uniform hypergraphs and prove that many of them are non-representable. Finally we explore consequences to algebraic versions of the generalized Lax conjecture.
AbstractList The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class of (hyperbolic) matroids which properly contains the class of matroids representable over the complex numbers. This connection was used by the first author to construct counterexamples to algebraic (stronger) versions of the generalized Lax conjecture by considering a non- representable hyperbolic matroid. The Va ́mos matroid and a generalization of it are to this day the only known instances of non-representable hyperbolic matroids. We prove that the Non-Pappus and Non-Desargues matroids are non-representable hyperbolic matroids by exploiting a connection, due to Jordan, between Euclidean Jordan algebras and projective geometries. We further identify a large class of hyperbolic matroids that are parametrized by uniform hypergraphs and prove that many of them are non-representable. Finally we explore consequences to algebraic versions of the generalized Lax conjecture.
Author Branden, Petter
Amini, Nima
Author_xml – sequence: 1
  givenname: Nima
  orcidid: 0000-0002-2305-9764
  surname: Amini
  fullname: Amini, Nima
  organization: Department of Mathematics
– sequence: 2
  givenname: Petter
  surname: Branden
  fullname: Branden, Petter
  organization: Department of Mathematics
BackLink https://hal.science/hal-02173792$$DView record in HAL
BookMark eNpVkE1LAzEQhoNUsK2e_AO9eBDZmq_dJMdS1BYWveg5TL7slu2mJIvQf--2FdHTDMM7zwzPBI262HmEbgme84oq-eh2vc3zilF5gcaEVWUhcYlHf_orNMl5izGhiosxunuNXZH8Pvnsux5M62ebw94nE9vGznbQp9i4fI0uA7TZ3_zUKfp4fnpfror67WW9XNSFJYLJwhmChVIyKC5Ljp103ClciZJbA1JxGoaU8FKUxmHmwJkgifWCWFlJBYRN0frMdRG2ep-aHaSDjtDo0yCmTw2pb2zrNR_4lHqqwHgemDWCEM4GB1AFW4EaWPdn1gbaf6jVotbHGabD00LRr-Pdh3PWpphz8uF3gWB9MqtPZvXRLPsGBbFsJg
ContentType Journal Article
Conference Proceeding
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.46298/dmtcs.6328
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_440d22e29abe4f3cb71143298a6fc6a9
oai:HAL:hal-02173792v1
10_46298_dmtcs_6328
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
1XC
VOOES
ID FETCH-LOGICAL-c1738-db107998f948540d8d4d906754cba8942f7387e875bd03dadbf81ce71c8689a13
IEDL.DBID DOA
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:29:10 EDT 2025
Tue Oct 14 20:42:02 EDT 2025
Sat Nov 29 02:48:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MeetingName 28-th International Conference on Formal Power Series and Algebraic Combinatorics
MergedId FETCHMERGED-LOGICAL-c1738-db107998f948540d8d4d906754cba8942f7387e875bd03dadbf81ce71c8689a13
ORCID 0000-0002-2305-9764
OpenAccessLink https://doaj.org/article/440d22e29abe4f3cb71143298a6fc6a9
ParticipantIDs doaj_primary_oai_doaj_org_article_440d22e29abe4f3cb71143298a6fc6a9
hal_primary_oai_HAL_hal_02173792v1
crossref_primary_10_46298_dmtcs_6328
PublicationCentury 2000
PublicationDate 2020-04-22
PublicationDateYYYYMMDD 2020-04-22
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-22
  day: 22
PublicationDecade 2020
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2020
Publisher DMTCS
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 2.252045
Snippet The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
SubjectTerms [math.math-co]mathematics [math]/combinatorics [math.co]
Combinatorics
Mathematics
Title Non-representable hyperbolic matroids
URI https://hal.science/hal-02173792
https://doaj.org/article/440d22e29abe4f3cb71143298a6fc6a9
Volume DMTCS Proceedings, 28th...
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734695
  issn: 1365-8050
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwED0hYICBb0T5qCJUxkDimNgeC6IqEq06gART5E-BRFPUlI78ds5OWsHEwpLBspzkXZJ3z47fAXRMzkzOmY2NdDRGvuUxz6SIkY6MMERiRsFDsQk2HPLnZzH6UerL_xNW2wPXwF1RmhhCLBFSWeoyrRhm8BkRXOZO5zJs3UuYWIipZv2ACMrq3Xg0x75XZjzT1WWe-aLrP_gn2PQjq7wuZlEDq_R2YKtJB6NufRm7sGLLPdhelFqImjdvDzYHS3vVah8uhpMyDnaUYeuQerfRK-rJqfImv9HYT2-_meoAnnp3j7f9uKl3EOuU4XfHKNRiKH-cd2zB2-aGGuEzeqqV5IISh72YRYWhTJIZaZTjqbYs1TznQqbZIayWk9IeQaT4tZMaqR4JHzWNUZmj2mjmEhwdSb8FnQUKxUdta1GgHAhgFQGswoPVghuP0LKL96IODRihoolQ8VeEWnCO-P4ao999KHybF0QZE2SeHv_HmU5gg3g5nNCYkFNYnU0_7Rms6_nsrZq2wxOCx8HXXRvWRveD0cs3ToLCgQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+mathematics+and+theoretical+computer+science&rft.atitle=Non-representable+hyperbolic+matroids&rft.au=Amini%2C+Nima&rft.au=Branden%2C+Petter&rft.date=2020-04-22&rft.pub=DMTCS&rft.issn=1462-7264&rft.eissn=1365-8050&rft.volume=DMTCS+Proceedings%2C+28th+International+Conference+on+Formal+Power+Series+and+Algebraic+Combinatorics+%28FPSAC+2016%29&rft_id=info:doi/10.46298%2Fdmtcs.6328&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-02173792v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon