Non-representable hyperbolic matroids

The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class of (hyperbolic) matroids which properly contains the class of matroids representable over the complex numbers. This connect...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th...
Hlavní autoři: Amini, Nima, Branden, Petter
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: DMTCS 22.04.2020
Discrete Mathematics & Theoretical Computer Science
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The generalized Lax conjecture asserts that each hyperbolicity cone is a linear slice of the cone of positive semidefinite matrices. Hyperbolic polynomials give rise to a class of (hyperbolic) matroids which properly contains the class of matroids representable over the complex numbers. This connection was used by the first author to construct counterexamples to algebraic (stronger) versions of the generalized Lax conjecture by considering a non- representable hyperbolic matroid. The Va ́mos matroid and a generalization of it are to this day the only known instances of non-representable hyperbolic matroids. We prove that the Non-Pappus and Non-Desargues matroids are non-representable hyperbolic matroids by exploiting a connection, due to Jordan, between Euclidean Jordan algebras and projective geometries. We further identify a large class of hyperbolic matroids that are parametrized by uniform hypergraphs and prove that many of them are non-representable. Finally we explore consequences to algebraic versions of the generalized Lax conjecture.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6328