DNA computing and meta-heuristic-based algorithm for big data task scheduling in cloud computing

With the advent of cloud computing, there is a need to enhance both the methods and algorithms of big data workloads for task scheduling. Due to the global spread of services with changing task load circumstances and different cloud client demands, big data task scheduling in cloud systems is a time...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Indonesian Journal of Electrical Engineering and Computer Science Jg. 35; H. 2; S. 1131
Hauptverfasser: Gandhimathinathan, Visalaxi, Alagesan, Muthukumaravel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 01.08.2024
ISSN:2502-4752, 2502-4760
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:With the advent of cloud computing, there is a need to enhance both the methods and algorithms of big data workloads for task scheduling. Due to the global spread of services with changing task load circumstances and different cloud client demands, big data task scheduling in cloud systems is a time-consuming process. The proposed approach emphasises the necessity for efficient big data task scheduling in the cloud computing, which exacerbate data processing. Virtual machines frequently utilise all three types of physical resources: CPU, memory, and storage. Big data task scheduling is one of the most important implications of cloud computing application resource management, and this research work meticulously offers a task scheduling technique for advancing cloud computing.
ISSN:2502-4752
2502-4760
DOI:10.11591/ijeecs.v35.i2.pp1131-1138