DNA computing and meta-heuristic-based algorithm for big data task scheduling in cloud computing

With the advent of cloud computing, there is a need to enhance both the methods and algorithms of big data workloads for task scheduling. Due to the global spread of services with changing task load circumstances and different cloud client demands, big data task scheduling in cloud systems is a time...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Indonesian Journal of Electrical Engineering and Computer Science Ročník 35; číslo 2; s. 1131
Hlavní autoři: Gandhimathinathan, Visalaxi, Alagesan, Muthukumaravel
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.08.2024
ISSN:2502-4752, 2502-4760
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:With the advent of cloud computing, there is a need to enhance both the methods and algorithms of big data workloads for task scheduling. Due to the global spread of services with changing task load circumstances and different cloud client demands, big data task scheduling in cloud systems is a time-consuming process. The proposed approach emphasises the necessity for efficient big data task scheduling in the cloud computing, which exacerbate data processing. Virtual machines frequently utilise all three types of physical resources: CPU, memory, and storage. Big data task scheduling is one of the most important implications of cloud computing application resource management, and this research work meticulously offers a task scheduling technique for advancing cloud computing.
ISSN:2502-4752
2502-4760
DOI:10.11591/ijeecs.v35.i2.pp1131-1138