A two-sided analogue of the Coxeter complex

For any Coxeter system (W, S) of rank n, we introduce an abstract boolean complex (simplicial poset) of dimension 2n − 1 which contains the Coxeter complex as a relative subcomplex. Faces are indexed by triples (J,w,K), where J and K are subsets of the set S of simple generators, and w is a minimal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings, 28th...
Hlavný autor: Petersen, T. Kyle
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: DMTCS 22.04.2020
Discrete Mathematics & Theoretical Computer Science
Predmet:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:For any Coxeter system (W, S) of rank n, we introduce an abstract boolean complex (simplicial poset) of dimension 2n − 1 which contains the Coxeter complex as a relative subcomplex. Faces are indexed by triples (J,w,K), where J and K are subsets of the set S of simple generators, and w is a minimal length representative for the double parabolic coset WJ wWK . There is exactly one maximal face for each element of the group W . The complex is shellable and thin, which implies the complex is a sphere for the finite Coxeter groups. In this case, a natural refinement of the h-polynomial is given by the “two-sided” W -Eulerian polynomial, i.e., the generating function for the joint distribution of left and right descents in W .
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.6353