Tiling the Line with Triples

It is known the one dimensional prototile $0,a,a+b$ and its reflection $0,b,a+b$ always tile some interval. The subject has not received a great deal of further attention, although many interesting questions exist. All the information about tilings can be encoded in a finite digraph $D_{ab}$. We pre...

Full description

Saved in:
Bibliographic Details
Published in:Discrete mathematics and theoretical computer science Vol. DMTCS Proceedings vol. AA,...; no. Proceedings; pp. 257 - 274
Main Author: Meyerowitz, Aaron
Format: Journal Article Conference Proceeding
Language:English
Published: DMTCS 01.01.2001
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Series:DMTCS Proceedings
Subjects:
ISSN:1365-8050, 1462-7264, 1365-8050
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract It is known the one dimensional prototile $0,a,a+b$ and its reflection $0,b,a+b$ always tile some interval. The subject has not received a great deal of further attention, although many interesting questions exist. All the information about tilings can be encoded in a finite digraph $D_{ab}$. We present several results about cycles and other structures in this graph. A number of conjectures and open problems are given.In [Go] an elegant proof by contradiction shows that a greedy algorithm will produce an interval tiling. We show that the process of converting to a direct proof leads to much stronger results.
AbstractList It is known the one dimensional prototile $0,a,a+b$ and its reflection $0,b,a+b$ always tile some interval. The subject has not received a great deal of further attention, although many interesting questions exist. All the information about tilings can be encoded in a finite digraph $D_{ab}$. We present several results about cycles and other structures in this graph. A number of conjectures and open problems are given.In [Go] an elegant proof by contradiction shows that a greedy algorithm will produce an interval tiling. We show that the process of converting to a direct proof leads to much stronger results.
Author Meyerowitz, Aaron
Author_xml – sequence: 1
  givenname: Aaron
  surname: Meyerowitz
  fullname: Meyerowitz, Aaron
  organization: Florida Atlantic University [Boca Raton]
BackLink https://inria.hal.science/hal-01182962$$DView record in HAL
BookMark eNpVkDtLA0EUhQeJYKJWthbbimyc96MMQU1gwSbWwzyTCZvdMLMo_nvzENHqXg7nfMU3AaOu7wIAdwhOKcdKPvnd4MoUY4kvwBgRzmoJGRz9-a_ApJQthAgrKsbgfpXa1K2rYROqJnWh-kzDplrltG9DuQGX0bQl3P7ca_D-8ryaL-rm7XU5nzW1Q4LgGkfpGI7YCko8c95QGhG2XDGGLCRMEOQs48G7aCGyJnAuPOVOSS8IEZFcg-WZ63uz1fucdiZ_6d4kfQr6vNYmD8m1QQvJGZc-eCMg9dRKGLFiHFnLkfNCHVgPZ9bGtP9Qi1mjjxlESGLF8Qc6dB_PXZf7UnKIvwME9UmoPgnVR6HkG8ASaA0
ContentType Journal Article
Conference Proceeding
Copyright Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOA
DOI 10.46298/dmtcs.2282
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
EndPage 274
ExternalDocumentID oai_doaj_org_article_786568deda704d4b80f29561bb61cd79
oai:HAL:hal-01182962v1
10_46298_dmtcs_2282
GroupedDBID -~9
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
C1A
CCPQU
CITATION
EBS
EJD
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
ICD
J9A
KQ8
L6V
LO0
M7S
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
REM
RNS
RSU
TR2
XSB
1XC
VOOES
ID FETCH-LOGICAL-c1732-2f8c52f2b743d5cda44f12b69551b035731cb56edcfb01bae667d46c98d7337f3
IEDL.DBID DOA
ISSN 1365-8050
1462-7264
IngestDate Fri Oct 03 12:52:14 EDT 2025
Tue Oct 14 20:53:53 EDT 2025
Sat Nov 29 02:48:22 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Proceedings
Keywords one dimension
direct proof
Tiling
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MeetingName Discrete Models: Combinatorics, Computation, and Geometry, DM-CCG 2001
MergedId FETCHMERGED-LOGICAL-c1732-2f8c52f2b743d5cda44f12b69551b035731cb56edcfb01bae667d46c98d7337f3
OpenAccessLink https://doaj.org/article/786568deda704d4b80f29561bb61cd79
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_786568deda704d4b80f29561bb61cd79
hal_primary_oai_HAL_hal_01182962v1
crossref_primary_10_46298_dmtcs_2282
PublicationCentury 2000
PublicationDate 2001-01-01
PublicationDateYYYYMMDD 2001-01-01
PublicationDate_xml – month: 01
  year: 2001
  text: 2001-01-01
  day: 01
PublicationDecade 2000
PublicationSeriesTitle DMTCS Proceedings
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2001
Publisher DMTCS
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics and Theoretical Computer Science
– name: DMTCS
– name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
ssib044734695
Score 1.4876527
Snippet It is known the one dimensional prototile $0,a,a+b$ and its reflection $0,b,a+b$ always tile some interval. The subject has not received a great deal of...
SourceID doaj
hal
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 257
SubjectTerms [info.info-cg] computer science [cs]/computational geometry [cs.cg]
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[info] computer science [cs]
[math.math-co] mathematics [math]/combinatorics [math.co]
Combinatorics
Computational Geometry
Computer Science
direct proof
Discrete Mathematics
Mathematics
one dimension
tiling
Title Tiling the Line with Triples
URI https://inria.hal.science/hal-01182962
https://doaj.org/article/786568deda704d4b80f29561bb61cd79
Volume DMTCS Proceedings vol. AA,...
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044734695
  issn: 1365-8050
  databaseCode: M~E
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT8JAFH4x6EEPLqgRRdIYrpXO0lmOaCCYAOGABk_NLG3kIBqKHP3tzrSFyMmLSdPDS9Ple23e0vm-B9DWEpnU5RUhUtKGVGU4VJqY0EqkI625FQWP-2XIx2Mxm8nJr1Fffk1YKQ9cAtfhwmUcwqZW8YhaqkWUYU_G1JohY3lB3Yu43BRT1f8DLCkv2XiUYSk69n1l8nuMBd6JP4VMv4sqb5suahFV-qdwXKWDQbe8jTPYSxd1ONmMWgiqL68OR6OtvGp-Ds3p3LPIA2cKXDGZBr6bGkyXvmmeX8Bzvzd9HITVmIPQIE5wiDNhYpxh7YK5jY1VlGYIayZdMqMjEnOCjI5Zak2mI6RVyhi3lBkpLCeEZ-QSaouPRXoFgY0Mi5XL6pTJKI20csUYkUYaLwxoiGxAe_PwyWepZpG4KqDAKCkwSjxGDXjwwGwP8RLUhcE5Jqkck_zlmAbcOVh3zjHoDhNv82xXLBleo-v_uNINHJYrw_zWhNpq-ZXewoFZr-b5slW8GG4_-u61YH_yNJq8_gABpL7H
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Discrete+mathematics+and+theoretical+computer+science&rft.atitle=Tiling+the+Line+with+Triples&rft.au=Meyerowitz%2C+Aaron&rft.series=DMTCS+Proceedings&rft.date=2001-01-01&rft.pub=DMTCS&rft.issn=1462-7264&rft.eissn=1365-8050&rft.volume=DMTCS+Proceedings+vol.+AA%2C+Discrete+Models%3A+Combinatorics%2C+Computation%2C+and+Geometry+%28DM-CCG+2001%29&rft.spage=257&rft.epage=274&rft_id=info:doi/10.46298%2Fdmtcs.2282&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-01182962v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon