Tiling the Line with Triples

It is known the one dimensional prototile $0,a,a+b$ and its reflection $0,b,a+b$ always tile some interval. The subject has not received a great deal of further attention, although many interesting questions exist. All the information about tilings can be encoded in a finite digraph $D_{ab}$. We pre...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník DMTCS Proceedings vol. AA,...; číslo Proceedings; s. 257 - 274
Hlavní autor: Meyerowitz, Aaron
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: DMTCS 01.01.2001
Discrete Mathematics and Theoretical Computer Science
Discrete Mathematics & Theoretical Computer Science
Edice:DMTCS Proceedings
Témata:
ISSN:1365-8050, 1462-7264, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:It is known the one dimensional prototile $0,a,a+b$ and its reflection $0,b,a+b$ always tile some interval. The subject has not received a great deal of further attention, although many interesting questions exist. All the information about tilings can be encoded in a finite digraph $D_{ab}$. We present several results about cycles and other structures in this graph. A number of conjectures and open problems are given.In [Go] an elegant proof by contradiction shows that a greedy algorithm will produce an interval tiling. We show that the process of converting to a direct proof leads to much stronger results.
ISSN:1365-8050
1462-7264
1365-8050
DOI:10.46298/dmtcs.2282