Latent factor models for the Chinese commodity futures markets

The rapid growth of Chinese commodity futures markets over the past several decades has created a fertile ground for exploring underlying market dynamics. In this research, we utilize Instrumented Principal Component Analysis (IPCA) alongside the Conditional Autoencoder (CA) method to construct late...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pacific-Basin finance journal Ročník 93; s. 102890
Hlavní autoři: Liu, Yanchu, Zhou, Heyang, Yang, Haisheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.10.2025
Témata:
ISSN:0927-538X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The rapid growth of Chinese commodity futures markets over the past several decades has created a fertile ground for exploring underlying market dynamics. In this research, we utilize Instrumented Principal Component Analysis (IPCA) alongside the Conditional Autoencoder (CA) method to construct latent factor models tailored to this market. By uncovering hidden patterns and intrinsic characteristics that drive futures prices, our empirical results demonstrate robust out-of-sample predictive accuracy. •We develop IPCA and CA models for Chinese Commodity Futures Markets.•We expand the set of profitable factors available for Chinese Commodity Futures Markets.•Comprehensive explanations with insights for the uncovered factors are provided.
ISSN:0927-538X
DOI:10.1016/j.pacfin.2025.102890