Strong convergence of an inertial Halpern type algorithm in Banach spaces
In this article, we obtain the strong convergence of the new modified Halpern iteration process x n + 1 = α n u + ( 1 - α n ) T n P ( x n + θ n ( x n - x n - 1 ) ) , n = 1 , 2 , 3 , … , to a common fixed point of { T n } , where { T n } n = 1 ∞ is a family of nonexpansive mappings on the closed and...
Uložené v:
| Vydané v: | Rendiconti del Circolo matematico di Palermo Ročník 72; číslo 3; s. 1561 - 1570 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cham
Springer International Publishing
01.04.2023
|
| Predmet: | |
| ISSN: | 0009-725X, 1973-4409 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this article, we obtain the strong convergence of the new modified Halpern iteration process
x
n
+
1
=
α
n
u
+
(
1
-
α
n
)
T
n
P
(
x
n
+
θ
n
(
x
n
-
x
n
-
1
)
)
,
n
=
1
,
2
,
3
,
…
,
to a common fixed point of
{
T
n
}
, where
{
T
n
}
n
=
1
∞
is a family of nonexpansive mappings on the closed and convex subset
C
of a Banach space
X
,
P
:
X
⟶
C
is a nonexpansive retraction,
{
α
n
}
⊂
[
0
,
1
]
and
{
θ
n
}
⊂
R
+
. Some applications of this result are also presented. |
|---|---|
| ISSN: | 0009-725X 1973-4409 |
| DOI: | 10.1007/s12215-022-00748-5 |