Strong convergence of an inertial Halpern type algorithm in Banach spaces

In this article, we obtain the strong convergence of the new modified Halpern iteration process x n + 1 = α n u + ( 1 - α n ) T n P ( x n + θ n ( x n - x n - 1 ) ) , n = 1 , 2 , 3 , … , to a common fixed point of { T n } , where { T n } n = 1 ∞ is a family of nonexpansive mappings on the closed and...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Rendiconti del Circolo matematico di Palermo Ročník 72; číslo 3; s. 1561 - 1570
Hlavný autor: Ranjbar, Sajad
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.04.2023
Predmet:
ISSN:0009-725X, 1973-4409
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this article, we obtain the strong convergence of the new modified Halpern iteration process x n + 1 = α n u + ( 1 - α n ) T n P ( x n + θ n ( x n - x n - 1 ) ) , n = 1 , 2 , 3 , … , to a common fixed point of { T n } , where { T n } n = 1 ∞ is a family of nonexpansive mappings on the closed and convex subset C of a Banach space X , P : X ⟶ C is a nonexpansive retraction, { α n } ⊂ [ 0 , 1 ] and { θ n } ⊂ R + . Some applications of this result are also presented.
ISSN:0009-725X
1973-4409
DOI:10.1007/s12215-022-00748-5