Enhanced non-negative matrix factorization via adaptive weighted bipartite graph learning for clustering problems
Non-negative matrix factorization (NMF)-based clustering models, widely employed in modern applications, typically consist of two principal stages: obtaining low-dimensional representation through NMF and applying clustering algorithms such as k-means to the representation. However, traditional NMF...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 650; S. 130871 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
14.10.2025
|
| Schlagworte: | |
| ISSN: | 0925-2312 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!