Enhanced non-negative matrix factorization via adaptive weighted bipartite graph learning for clustering problems
Non-negative matrix factorization (NMF)-based clustering models, widely employed in modern applications, typically consist of two principal stages: obtaining low-dimensional representation through NMF and applying clustering algorithms such as k-means to the representation. However, traditional NMF...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 650; s. 130871 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
14.10.2025
|
| Predmet: | |
| ISSN: | 0925-2312 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!