Koszulity of dual braid monoid algebras via cluster complexes

The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the d...

Full description

Saved in:
Bibliographic Details
Published in:Annales mathématiques Blaise Pascal Vol. 30; no. 2; pp. 141 - 188
Main Authors: Nadeau, Philippe, Josuat-Vergès, Matthieu
Format: Journal Article
Language:English
Published: Université Blaise-Pascal - Clermont-Ferrand 30.04.2024
Subjects:
ISSN:1259-1734, 2118-7436
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the dual braid monoid algebra, by building explicitly the minimal free resolution of the ground field. This is done explicitly using some chains complexes defined in terms of the positive part of the cluster complex. Secondly, we derive various properties of the quadratic dual algebra. We show that it is naturally graded by the noncrossing partition lattice. We get an explicit basis, naturally indexed by positive faces of the cluster complex. Moreover, we find the structure constants via a geometric rule in terms of the cluster fan. Eventually, we realize this dual algebra as a quotient of a Nichols algebra. This latter fact makes a connection with results of Zhang, who used the same algebra to compute the homology of Milnor fibers of reflection arrangements. Le monoïde dual des tresses a été introduit par Bessis dans le contexte des arrangements d’hyperplanscomplexes. Le but de ce travail est de montrer que la dualité de Koszul fournit une interaction remarquableavec le complexe d’amas introduit par Fomin et Zelevinsky. Premièrement, nous démontrons la koszulitéde l’algèbre du monoïde dual des tresses, en donnant explicitement la résolution libre minimale ducorps de base. Cette construction utilise des complexes de chaînes définis grâce à la partie positive ducomplexe d’amas. Deuxièmement, nous examinons diverses propriétés de l’algèbre quadratique duale.Nous démontrons qu’elle est naturellement graduée par le treillis des partitions non-croisées. Nousobtenons une base explicite, indicée par les faces positives du complexe d’amas. Les constantes destructure peuvent être décrites explicitement en termes de l’éventail des amas. Enfin, nous réalisons cettealgèbre duale comme un quotient d’une algèbre de Nichols. Ce dernier point se relie aux travaux deZhang, qui a utilisé cette algèbre pour un calcul d’homologie des fibres de Milnor d’un arrangement deCoxeter.
AbstractList The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a nice interplay between the dual braid monoid and the cluster complex introduced by Fomin and Zelevinsky. Firstly, we prove koszulity of the dual braid monoid algebra, by building explicitly the minimal free resolution of the ground field. This is done explicitly using some chains complexes defined in terms of the positive part of the cluster complex. Secondly, we derive various properties of the quadratic dual algebra. We show that it is naturally graded by the noncrossing partition lattice. We get an explicit basis, naturally indexed by positive faces of the cluster complex. Moreover, we find the structure constants via a geometric rule in terms of the cluster fan. Eventually, we realize this dual algebra as a quotient of a Nichols algebra. This latter fact makes a connection with results of Zhang, who used the same algebra to compute the homology of Milnor fibers of reflection arrangements. Le monoïde dual des tresses a été introduit par Bessis dans le contexte des arrangements d’hyperplanscomplexes. Le but de ce travail est de montrer que la dualité de Koszul fournit une interaction remarquableavec le complexe d’amas introduit par Fomin et Zelevinsky. Premièrement, nous démontrons la koszulitéde l’algèbre du monoïde dual des tresses, en donnant explicitement la résolution libre minimale ducorps de base. Cette construction utilise des complexes de chaînes définis grâce à la partie positive ducomplexe d’amas. Deuxièmement, nous examinons diverses propriétés de l’algèbre quadratique duale.Nous démontrons qu’elle est naturellement graduée par le treillis des partitions non-croisées. Nousobtenons une base explicite, indicée par les faces positives du complexe d’amas. Les constantes destructure peuvent être décrites explicitement en termes de l’éventail des amas. Enfin, nous réalisons cettealgèbre duale comme un quotient d’une algèbre de Nichols. Ce dernier point se relie aux travaux deZhang, qui a utilisé cette algèbre pour un calcul d’homologie des fibres de Milnor d’un arrangement deCoxeter.
Author Nadeau, Philippe
Josuat-Vergès, Matthieu
Author_xml – sequence: 1
  givenname: Philippe
  orcidid: 0000-0002-7230-755X
  surname: Nadeau
  fullname: Nadeau, Philippe
  organization: Combinatoire, théorie des nombres
– sequence: 2
  givenname: Matthieu
  orcidid: 0000-0002-7782-2171
  surname: Josuat-Vergès
  fullname: Josuat-Vergès, Matthieu
  organization: Institut de Recherche en Informatique Fondamentale
BackLink https://hal.science/hal-03373390$$DView record in HAL
BookMark eNotjM1LwzAcQINMsJuCf0KuHjqT_PLRHDyMoU4seNFzyVe1kjajWYfzr7eipwcP3luixZCGgNA1JWtREXZrertfc0bOUMEorUrFQS5QQZnQJVXAL9Ay509CQDApC3T3nPL3FLvDCacW-8lEbEfTedynIc0w8T3MIuNjZ7CLUz6EEbvU72P4CvkSnbcm5nD1zxV6e7h_3e7K-uXxabupS0cVJaW1LigjNQcqmJfGeaW99g4kq6SoWlIZHRSA5ZSISnsug2wptNZL4Z2WsEI3f98PE5v92PVmPDXJdM1uUze_jgDMvSZHCj-PA0zV
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID 1XC
VOOES
DOI 10.5802/ambp.420
DatabaseName Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2118-7436
EndPage 188
ExternalDocumentID oai:HAL:hal-03373390v1
GroupedDBID 1XC
2WC
AAFWJ
ACIPV
ADRWJ
AEXTA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AMVHM
E3Z
GROUPED_DOAJ
OK1
SDR
VOOES
ID FETCH-LOGICAL-c1710-bbce7a6943152d6acd79d9dc3628658f08a9e733b410589d46e6f13fbd65dc963
ISSN 1259-1734
IngestDate Tue Oct 14 20:31:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1710-bbce7a6943152d6acd79d9dc3628658f08a9e733b410589d46e6f13fbd65dc963
ORCID 0000-0002-7230-755X
0000-0002-7782-2171
OpenAccessLink http://dx.doi.org/10.5802/ambp.420
PageCount 48
ParticipantIDs hal_primary_oai_HAL_hal_03373390v1
PublicationCentury 2000
PublicationDate 2024-04-30
PublicationDateYYYYMMDD 2024-04-30
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-30
  day: 30
PublicationDecade 2020
PublicationTitle Annales mathématiques Blaise Pascal
PublicationYear 2024
Publisher Université Blaise-Pascal - Clermont-Ferrand
Publisher_xml – name: Université Blaise-Pascal - Clermont-Ferrand
SSID ssj0035266
Score 2.2818105
Snippet The dual braid monoid was introduced by Bessis in his work on complex reflection arrangements. The goal of this work is to show that Koszul duality provides a...
SourceID hal
SourceType Open Access Repository
StartPage 141
SubjectTerms Combinatorics
Mathematics
Title Koszulity of dual braid monoid algebras via cluster complexes
URI https://hal.science/hal-03373390
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2118-7436
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0035266
  issn: 1259-1734
  databaseCode: DOA
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jj9MwFLaqgQMcEKvYZSFukSGJs_lYBqrCDNVIDNLcIsd2ppFCUjVJVfGf-I8829ngNBy4uJVTxU7eV7_9PYTeepJnTMUS1JJcuxlVQJgSOWGgbAhXRYHLpWk2EW82ydUVu1gsfg25MIcyrqrkeGS7_0pqmANi69TZfyD3eFOYgO9AdBiB7DDeiPBndfOzK_tIC5NpBQpxIR3YQA0fuq8HTDTOodB5kZ0ulGADy9Wxjyec11ZWjQMy7db607V0q_mI86HUHicQPxvBxxCNDZeKd5OVZjdi5kvddLzVtsNrc6PEmrh1q_FCdXPDgx_MfChTEdumaO0O-pWJXdkhzmkJrKWuWrJS-73tRjIcsqByES_ujZjKzAE0dF1TWwxlOJn71YqZgmyPWc8Wy-o5tmcbA_7NDMLEFJflP7Ldu8B3J4Y3OPnXy2_pxcdVev55c_bn1VmQ4np5DuOWl8SlNKaUuQdQtm_5cciSQYO3jF93GjDJbMPj2VrHehvvh02ABLMdLPZGgrm8j-71qgdeWsg8QAtVPUR3v451e5tHaAIPrnOswYMNeLAFDx7AgwE8uAcPHsHzGH1ffbo8XZO-wQYRHkiWJMuEinnEQIgMfRlxIWMmmRTU5CsnuZtw-B9TmulY4ITJIFJR7tE8k1EoBRzdT9BJVVfqKcIqCsPQT0QuKA84jTIRBRnLQ-3mzZXrP0Nv4MHTnS2hkuqi5vBmUz03vdfnN_nRC3RnQuNLdNLuO_UK3RaHtmj2rw1FfgPdrmhc
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Koszulity+of+dual+braid+monoid+algebras+via+cluster+complexes&rft.jtitle=Annales+math%C3%A9matiques+Blaise+Pascal&rft.au=Nadeau%2C+Philippe&rft.au=Josuat-Verg%C3%A8s%2C+Matthieu&rft.date=2024-04-30&rft.pub=Universit%C3%A9+Blaise-Pascal+-+Clermont-Ferrand&rft.issn=1259-1734&rft.eissn=2118-7436&rft.volume=30&rft.issue=2&rft.spage=141&rft.epage=188&rft_id=info:doi/10.5802%2Fambp.420&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03373390v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1259-1734&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1259-1734&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1259-1734&client=summon