An accelerated preconditioned primal-dual gradient algorithm for structured nonconvex optimization problems

•An novel accelerated preconditioned primal-dual gradient algorithm for solving nonconvex optimization problems by the conjugate duality theory of nonconvex functions.•Our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communications in nonlinear science & numerical simulation Ročník 153; s. 109480
Hlavní autoři: Long, Xian-Jun, Nie, Jia-Lin, Gou, Zhun, Sun, Xiang-Kai, Li, Gao-Xi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.02.2026
Témata:
ISSN:1007-5704
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An novel accelerated preconditioned primal-dual gradient algorithm for solving nonconvex optimization problems by the conjugate duality theory of nonconvex functions.•Our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous and it does not need to calculate the proximal mapping of nonconvex functions. the computation load may be significantly reduced.•Global convergence under Kurdyka-Lojasiewicz condition.•Numerical results illustrate that the proposed algorithm is quite competitive with some existing algorithms. For a nonconvex problem, the computation of the proximal operator of the nonconvex function is difficult in general. In this paper, based on the conjugate duality theory of nonconvex functions, we present an accelerated preconditioned primal-dual gradient algorithm for a class of nonconvex optimization problems. Compared with the existing algorithms, our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous and it does not need to calculate the proximal mapping of nonconvex functions. Hence, the computation load may be significantly reduced. We prove that the sequence generated by the proposed algorithm globally converges to a critical point under Kurdyka-Łojasiewicz framework. Furthermore, we derive the convergence rate of the proposed algorithm. Finally, numerical results on signal recovery, image denoising and sparse principal component analysis illustrate that the proposed algorithm is quite competitive with some existing algorithms.
AbstractList •An novel accelerated preconditioned primal-dual gradient algorithm for solving nonconvex optimization problems by the conjugate duality theory of nonconvex functions.•Our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous and it does not need to calculate the proximal mapping of nonconvex functions. the computation load may be significantly reduced.•Global convergence under Kurdyka-Lojasiewicz condition.•Numerical results illustrate that the proposed algorithm is quite competitive with some existing algorithms. For a nonconvex problem, the computation of the proximal operator of the nonconvex function is difficult in general. In this paper, based on the conjugate duality theory of nonconvex functions, we present an accelerated preconditioned primal-dual gradient algorithm for a class of nonconvex optimization problems. Compared with the existing algorithms, our algorithm only needs to calculate the proximal mapping of the conjugate function which is always convex and lower semicontinuous and it does not need to calculate the proximal mapping of nonconvex functions. Hence, the computation load may be significantly reduced. We prove that the sequence generated by the proposed algorithm globally converges to a critical point under Kurdyka-Łojasiewicz framework. Furthermore, we derive the convergence rate of the proposed algorithm. Finally, numerical results on signal recovery, image denoising and sparse principal component analysis illustrate that the proposed algorithm is quite competitive with some existing algorithms.
ArticleNumber 109480
Author Gou, Zhun
Long, Xian-Jun
Li, Gao-Xi
Nie, Jia-Lin
Sun, Xiang-Kai
Author_xml – sequence: 1
  givenname: Xian-Jun
  surname: Long
  fullname: Long, Xian-Jun
  email: xianjunlong@ctbu.edu.cn
– sequence: 2
  givenname: Jia-Lin
  surname: Nie
  fullname: Nie, Jia-Lin
  email: niejialin00@163.com
– sequence: 3
  givenname: Zhun
  surname: Gou
  fullname: Gou, Zhun
  email: 577298380@qq.com
– sequence: 4
  givenname: Xiang-Kai
  surname: Sun
  fullname: Sun, Xiang-Kai
  email: sunxk@ctbu.edu.cn
– sequence: 5
  givenname: Gao-Xi
  surname: Li
  fullname: Li, Gao-Xi
  email: ligaoxicn@126.com
BookMark eNp9kM1OwzAQhH0oEi3wBFzyAil27DTpgUNV8SdV4gJna22vi0sSV7ZbAU-P03LmtNrVzGjnm5HJ4Ack5JbROaNscbeb6yEOcV7Rqs6XpWjphEwZpU1ZN1RcklmMO5qVy1pMyedqKEBr7DBAQlPsA2o_GJdcTh1X10NXmgN0xTaAcTikArqtDy599IX1oYgpHHQ6hKzOn2TzEb8Kv0-udz8wxuQQrzrs4zW5sNBFvPmbV-T98eFt_VxuXp9e1qtNqVlDUwkLy5VVVIGworUMKgOglOAcFkLQWnNe4dLUaIG1tEXLNa-05lQDMt4ofkX4OVcHH2NAK081wrdkVI6M5E6eGMmRkTwzyq77swvza0eHQUad62o0LjNJ0nj3r_8XvWB5cg
Cites_doi 10.1137/16M1064064
10.1007/s10898-020-00943-7
10.1287/moor.1100.0449
10.1137/18M1190689
10.1137/14098435X
10.1007/s10589-022-00364-0
10.1109/TIT.2006.871582
10.1016/j.apnum.2023.03.014
10.1016/j.ejor.2025.04.034
10.1137/S0363012998338806
10.1007/s10107-011-0484-9
10.1007/s10851-015-0565-0
10.1109/TCBB.2017.2756628
10.1016/j.apnum.2024.05.006
10.1287/moor.2017.0900
10.1137/140952363
10.1007/s10898-019-00819-5
10.1137/130942954
10.1109/MSP.2018.2877582
10.1007/s10107-013-0701-9
10.1007/s12532-018-0153-6
10.1137/16M1107863
10.1007/s10898-022-01176-6
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cnsns.2025.109480
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
ExternalDocumentID 10_1016_j_cnsns_2025_109480
S1007570425008895
GroupedDBID --K
--M
-01
-0A
-0I
-0Y
-SA
-S~
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VR
5VS
7-5
71M
8P~
92M
9D9
9DA
9DU
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABAOU
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACLOT
ACNNM
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADGUI
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFUIB
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIGVJ
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAJEA
CCEZO
CCVFK
CHBEP
CS3
CUBFJ
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
JUIAU
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q--
Q-0
Q38
R2-
ROL
RPZ
RT1
RT9
S..
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
T8Q
T8Y
U1G
U5K
UHS
~G-
~HD
~LA
AAYXX
CITATION
ID FETCH-LOGICAL-c170t-a6f3bfb0ba4f48f1a2daabb433a64405c332e9d5efa1808ef3c32cc30cae137b3
ISSN 1007-5704
IngestDate Thu Nov 27 00:59:47 EST 2025
Sat Nov 29 17:14:34 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Structured nonconvex and nonsmooth problem
Global convergence
Kurdyka-Łojasiewicz property
90C30
90C33
Primal-dual gradient algorithm
90C26
Conjugate duality theory
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c170t-a6f3bfb0ba4f48f1a2daabb433a64405c332e9d5efa1808ef3c32cc30cae137b3
ParticipantIDs crossref_primary_10_1016_j_cnsns_2025_109480
elsevier_sciencedirect_doi_10_1016_j_cnsns_2025_109480
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Communications in nonlinear science & numerical simulation
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Bolte, Sabach, Teboulle (bib0006) 2014; 146
Pock, Sabach (bib0014) 2016; 9
Lou, Zeng, Osher, Xin (bib0011) 2015; 8
Pham, Dao, Amjady, Shah (bib0019) 2025; 326
Wang, Wang (bib0020) 2022; 82
Long, Wang, Li, Li (bib0018) 2024; 202
Beck (bib0023) 2017
Samaria, Harter (bib0031) 1994
Attouch, Bolte, Svaiter (bib0002) 2013; 137
Fu, Huang, Sidiropoulos, Ma (bib0001) 2019; 36
Rockafellar, Wets (bib0024) 1998; vol. 317
Attouch, Bolte, Redont, Soubeyran (bib0004) 2010; 35
Ma, Hu, He, Jiang (bib0007) 2017; 17
Zhu, Li, Liu, Li (bib0013) 2018; 31
Bonnans, Shapiro (bib0027) 2013
Bolte, Sabach, Teboulle (bib0029) 2018; 43
Ochs, Chen, Brox, Pock (bib0009) 2014; 7
Zhao, Dong, Michael, Wang (bib0022) 2022; 84
Berk, Bertsimas (bib0005) 2019; 11
Bot, Csetnek, Nguyen (bib0017) 2019; 29
Donoho (bib0003) 2006; 52
Ochs, Brox, Pock (bib0008) 2015; 53
Yin, Lou, He, Xin (bib0012) 2015; 37
Rockafellar (bib0025) 1970
Pock, Chambolle (bib0028) 2011
Bauschke, Combettes (bib0026) 2017
Tseng (bib0030) 2000; 38
Gao, Cai, Han (bib0015) 2020; 76
Wu, Li, Li, Lim (bib0021) 2021; 79
Pan, M (bib0010) 2018; 39
Wang, Han (bib0016) 2023; 189
Pan (10.1016/j.cnsns.2025.109480_bib0010) 2018; 39
Pham (10.1016/j.cnsns.2025.109480_bib0019) 2025; 326
Berk (10.1016/j.cnsns.2025.109480_bib0005) 2019; 11
Bonnans (10.1016/j.cnsns.2025.109480_bib0027) 2013
Wu (10.1016/j.cnsns.2025.109480_bib0021) 2021; 79
Wang (10.1016/j.cnsns.2025.109480_bib0016) 2023; 189
Tseng (10.1016/j.cnsns.2025.109480_bib0030) 2000; 38
Yin (10.1016/j.cnsns.2025.109480_bib0012) 2015; 37
Pock (10.1016/j.cnsns.2025.109480_bib0028) 2011
Pock (10.1016/j.cnsns.2025.109480_bib0014) 2016; 9
Rockafellar (10.1016/j.cnsns.2025.109480_bib0024) 1998; vol. 317
Bolte (10.1016/j.cnsns.2025.109480_bib0029) 2018; 43
Gao (10.1016/j.cnsns.2025.109480_bib0015) 2020; 76
Ochs (10.1016/j.cnsns.2025.109480_bib0008) 2015; 53
Fu (10.1016/j.cnsns.2025.109480_bib0001) 2019; 36
Zhu (10.1016/j.cnsns.2025.109480_bib0013) 2018; 31
Zhao (10.1016/j.cnsns.2025.109480_bib0022) 2022; 84
Rockafellar (10.1016/j.cnsns.2025.109480_bib0025) 1970
Lou (10.1016/j.cnsns.2025.109480_bib0011) 2015; 8
Bauschke (10.1016/j.cnsns.2025.109480_bib0026) 2017
Ochs (10.1016/j.cnsns.2025.109480_bib0009) 2014; 7
Ma (10.1016/j.cnsns.2025.109480_bib0007) 2017; 17
Wang (10.1016/j.cnsns.2025.109480_bib0020) 2022; 82
Bolte (10.1016/j.cnsns.2025.109480_bib0006) 2014; 146
Attouch (10.1016/j.cnsns.2025.109480_bib0004) 2010; 35
Attouch (10.1016/j.cnsns.2025.109480_bib0002) 2013; 137
Beck (10.1016/j.cnsns.2025.109480_bib0023) 2017
Bot (10.1016/j.cnsns.2025.109480_bib0017) 2019; 29
Long (10.1016/j.cnsns.2025.109480_bib0018) 2024; 202
Donoho (10.1016/j.cnsns.2025.109480_bib0003) 2006; 52
Samaria (10.1016/j.cnsns.2025.109480_bib0031) 1994
References_xml – volume: 8
  start-page: 1798
  year: 2015
  end-page: 1823
  ident: bib0011
  article-title: A weighted difference of anisotropic and isotropic total variation model for image processing
  publication-title: SIAM J Imag Sci
– volume: 76
  start-page: 863
  year: 2020
  end-page: 887
  ident: bib0015
  article-title: A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems
  publication-title: J Global Optim
– volume: 9
  start-page: 1756
  year: 2016
  end-page: 1787
  ident: bib0014
  article-title: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems
  publication-title: SIAM J Imag Sci
– volume: 189
  start-page: 66
  year: 2023
  end-page: 87
  ident: bib0016
  article-title: A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems
  publication-title: Appl Numer Math
– volume: vol. 317
  year: 1998
  ident: bib0024
– volume: 36
  start-page: 59
  year: 2019
  end-page: 80
  ident: bib0001
  article-title: Nonnegative matrix factorization for signal and data analytics: identifiability, algorithms, and applications
  publication-title: IEEE Signal Process Mag
– volume: 79
  start-page: 617
  year: 2021
  end-page: 644
  ident: bib0021
  article-title: Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems
  publication-title: J Global Optim
– start-page: 1762
  year: 2011
  end-page: 1769
  ident: bib0028
  article-title: Diagonal preconditioning for first order primal-dual algorithms in convex optimization
  publication-title: 2011 International conference on computer vision
– volume: 202
  start-page: 209
  year: 2024
  end-page: 221
  ident: bib0018
  article-title: A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems
  publication-title: Appl Numer Math
– volume: 43
  start-page: 1210
  year: 2018
  end-page: 1232
  ident: bib0029
  article-title: Nonconvex Lagrangian-based optimization: monitoring schemes and global convergence
  publication-title: Math Oper Res
– year: 1970
  ident: bib0025
  article-title: Convex analysis
– volume: 11
  start-page: 381
  year: 2019
  end-page: 420
  ident: bib0005
  article-title: Certifiably optimal sparse principal component analysis
  publication-title: Math Program Comput
– volume: 146
  start-page: 459
  year: 2014
  end-page: 494
  ident: bib0006
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math Program
– year: 2013
  ident: bib0027
  article-title: Perturbation analysis of optimization problems
– volume: 39
  start-page: 856
  year: 2018
  end-page: 875
  ident: bib0010
  article-title: Ng orthogonal nonnegative matrix factorization by sparsity and nuclear norm optimization
  publication-title: SIAM J Matrix Anal Appl
– volume: 53
  start-page: 171
  year: 2015
  end-page: 181
  ident: bib0008
  article-title: iPiasco: inertial proximal algorithm for strongly convex optimization
  publication-title: J Math Imag Vision
– volume: 35
  start-page: 438
  year: 2010
  end-page: 457
  ident: bib0004
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality
  publication-title: Math Oper Res
– volume: 82
  start-page: 441
  year: 2022
  end-page: 463
  ident: bib0020
  article-title: Malitsky-Tam forward-reflected-backward splitting method for nonconvex minimization problems
  publication-title: Comput Optim Appl
– year: 2017
  ident: bib0023
  article-title: First-order methods in optimization
– volume: 137
  start-page: 91
  year: 2013
  end-page: 129
  ident: bib0002
  article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
  publication-title: Math Program
– volume: 38
  start-page: 431
  year: 2000
  end-page: 446
  ident: bib0030
  article-title: A modified forward-backward splitting method for maximal monotone mappings
  publication-title: SIAM J Control Optim
– volume: 7
  start-page: 1388
  year: 2014
  end-page: 1419
  ident: bib0009
  article-title: IPiano: inertial proximal algorithm for nonconvex optimization
  publication-title: SIAM J Imag Sci
– volume: 29
  start-page: 1300
  year: 2019
  end-page: 1328
  ident: bib0017
  article-title: A proximal minimization algorithm for structured nonconvex and nonsmooth problems
  publication-title: SIAM J Optim
– year: 2017
  ident: bib0026
  article-title: Convex analysis and monotone operator theory in hilbert spaces
– year: 1994
  ident: bib0031
  article-title: Parameterisation of a stochastic model for human face identification
  publication-title: Proceedings of 1994 IEEE workshop on applications of computer vision
– volume: 17
  start-page: 788
  year: 2017
  end-page: 795
  ident: bib0007
  article-title: Clustering and integrating of heterogeneous microbiome data by joint symmetric nonnegative matrix factorization with Laplacian regularization
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
– volume: 84
  start-page: 941
  year: 2022
  end-page: 966
  ident: bib0022
  article-title: Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems
  publication-title: J Global Optim
– volume: 326
  start-page: 42
  year: 2025
  end-page: 53
  ident: bib0019
  article-title: A proximal splitting algorithm for generalized DC programming with applications in signal recovery
  publication-title: Eur J Oper Res
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: bib0003
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
– volume: 37
  start-page: 536
  year: 2015
  end-page: A563
  ident: bib0012
  article-title: Minimization of
  publication-title: SIAM J Sci Comput
– volume: 31
  start-page: 5160
  year: 2018
  end-page: 5170
  ident: bib0013
  article-title: Dropping symmetry for fast symmetric nonnegative matrix factorization
  publication-title: Adv Neural Inf Process Syst
– volume: 9
  start-page: 1756
  issue: 4
  year: 2016
  ident: 10.1016/j.cnsns.2025.109480_bib0014
  article-title: Inertial proximal alternating linearized minimization (iPALM) for nonconvex and nonsmooth problems
  publication-title: SIAM J Imag Sci
  doi: 10.1137/16M1064064
– volume: 79
  start-page: 617
  issue: 3
  year: 2021
  ident: 10.1016/j.cnsns.2025.109480_bib0021
  article-title: Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems
  publication-title: J Global Optim
  doi: 10.1007/s10898-020-00943-7
– volume: 35
  start-page: 438
  issue: 2
  year: 2010
  ident: 10.1016/j.cnsns.2025.109480_bib0004
  article-title: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality
  publication-title: Math Oper Res
  doi: 10.1287/moor.1100.0449
– volume: 31
  start-page: 5160
  year: 2018
  ident: 10.1016/j.cnsns.2025.109480_bib0013
  article-title: Dropping symmetry for fast symmetric nonnegative matrix factorization
  publication-title: Adv Neural Inf Process Syst
– volume: 29
  start-page: 1300
  issue: 2
  year: 2019
  ident: 10.1016/j.cnsns.2025.109480_bib0017
  article-title: A proximal minimization algorithm for structured nonconvex and nonsmooth problems
  publication-title: SIAM J Optim
  doi: 10.1137/18M1190689
– year: 2017
  ident: 10.1016/j.cnsns.2025.109480_bib0026
– volume: 8
  start-page: 1798
  issue: 3
  year: 2015
  ident: 10.1016/j.cnsns.2025.109480_bib0011
  article-title: A weighted difference of anisotropic and isotropic total variation model for image processing
  publication-title: SIAM J Imag Sci
  doi: 10.1137/14098435X
– volume: vol. 317
  year: 1998
  ident: 10.1016/j.cnsns.2025.109480_bib0024
– year: 2013
  ident: 10.1016/j.cnsns.2025.109480_bib0027
– volume: 82
  start-page: 441
  issue: 2
  year: 2022
  ident: 10.1016/j.cnsns.2025.109480_bib0020
  article-title: Malitsky-Tam forward-reflected-backward splitting method for nonconvex minimization problems
  publication-title: Comput Optim Appl
  doi: 10.1007/s10589-022-00364-0
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.cnsns.2025.109480_bib0003
  article-title: Compressed sensing
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2006.871582
– volume: 189
  start-page: 66
  year: 2023
  ident: 10.1016/j.cnsns.2025.109480_bib0016
  article-title: A generalized inertial proximal alternating linearized minimization method for nonconvex nonsmooth problems
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2023.03.014
– volume: 326
  start-page: 42
  year: 2025
  ident: 10.1016/j.cnsns.2025.109480_bib0019
  article-title: A proximal splitting algorithm for generalized DC programming with applications in signal recovery
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2025.04.034
– year: 1994
  ident: 10.1016/j.cnsns.2025.109480_bib0031
  article-title: Parameterisation of a stochastic model for human face identification
– volume: 38
  start-page: 431
  issue: 2
  year: 2000
  ident: 10.1016/j.cnsns.2025.109480_bib0030
  article-title: A modified forward-backward splitting method for maximal monotone mappings
  publication-title: SIAM J Control Optim
  doi: 10.1137/S0363012998338806
– volume: 137
  start-page: 91
  issue: 1
  year: 2013
  ident: 10.1016/j.cnsns.2025.109480_bib0002
  article-title: Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods
  publication-title: Math Program
  doi: 10.1007/s10107-011-0484-9
– year: 1970
  ident: 10.1016/j.cnsns.2025.109480_bib0025
– volume: 53
  start-page: 171
  year: 2015
  ident: 10.1016/j.cnsns.2025.109480_bib0008
  article-title: iPiasco: inertial proximal algorithm for strongly convex optimization
  publication-title: J Math Imag Vision
  doi: 10.1007/s10851-015-0565-0
– volume: 17
  start-page: 788
  issue: 3
  year: 2017
  ident: 10.1016/j.cnsns.2025.109480_bib0007
  article-title: Clustering and integrating of heterogeneous microbiome data by joint symmetric nonnegative matrix factorization with Laplacian regularization
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2017.2756628
– volume: 202
  start-page: 209
  year: 2024
  ident: 10.1016/j.cnsns.2025.109480_bib0018
  article-title: A Bregman proximal subgradient algorithm for nonconvex and nonsmooth fractional optimization problems
  publication-title: Appl Numer Math
  doi: 10.1016/j.apnum.2024.05.006
– volume: 43
  start-page: 1210
  issue: 4
  year: 2018
  ident: 10.1016/j.cnsns.2025.109480_bib0029
  article-title: Nonconvex Lagrangian-based optimization: monitoring schemes and global convergence
  publication-title: Math Oper Res
  doi: 10.1287/moor.2017.0900
– volume: 37
  start-page: 536
  issue: 1
  year: 2015
  ident: 10.1016/j.cnsns.2025.109480_bib0012
  article-title: Minimization of l_1−2 for compressed sensing
  publication-title: SIAM J Sci Comput
  doi: 10.1137/140952363
– volume: 76
  start-page: 863
  year: 2020
  ident: 10.1016/j.cnsns.2025.109480_bib0015
  article-title: A Gauss-Seidel type inertial proximal alternating linearized minimization for a class of nonconvex optimization problems
  publication-title: J Global Optim
  doi: 10.1007/s10898-019-00819-5
– start-page: 1762
  year: 2011
  ident: 10.1016/j.cnsns.2025.109480_bib0028
  article-title: Diagonal preconditioning for first order primal-dual algorithms in convex optimization
– volume: 7
  start-page: 1388
  issue: 2
  year: 2014
  ident: 10.1016/j.cnsns.2025.109480_bib0009
  article-title: IPiano: inertial proximal algorithm for nonconvex optimization
  publication-title: SIAM J Imag Sci
  doi: 10.1137/130942954
– volume: 36
  start-page: 59
  issue: 2
  year: 2019
  ident: 10.1016/j.cnsns.2025.109480_bib0001
  article-title: Nonnegative matrix factorization for signal and data analytics: identifiability, algorithms, and applications
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2018.2877582
– volume: 146
  start-page: 459
  issue: 1
  year: 2014
  ident: 10.1016/j.cnsns.2025.109480_bib0006
  article-title: Proximal alternating linearized minimization for nonconvex and nonsmooth problems
  publication-title: Math Program
  doi: 10.1007/s10107-013-0701-9
– volume: 11
  start-page: 381
  issue: 3
  year: 2019
  ident: 10.1016/j.cnsns.2025.109480_bib0005
  article-title: Certifiably optimal sparse principal component analysis
  publication-title: Math Program Comput
  doi: 10.1007/s12532-018-0153-6
– year: 2017
  ident: 10.1016/j.cnsns.2025.109480_bib0023
– volume: 39
  start-page: 856
  issue: 2
  year: 2018
  ident: 10.1016/j.cnsns.2025.109480_bib0010
  article-title: Ng orthogonal nonnegative matrix factorization by sparsity and nuclear norm optimization
  publication-title: SIAM J Matrix Anal Appl
  doi: 10.1137/16M1107863
– volume: 84
  start-page: 941
  year: 2022
  ident: 10.1016/j.cnsns.2025.109480_bib0022
  article-title: Two-step inertial Bregman alternating minimization algorithm for nonconvex and nonsmooth problems
  publication-title: J Global Optim
  doi: 10.1007/s10898-022-01176-6
SSID ssj0016954
Score 2.4515216
Snippet •An novel accelerated preconditioned primal-dual gradient algorithm for solving nonconvex optimization problems by the conjugate duality theory of nonconvex...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 109480
SubjectTerms Conjugate duality theory
Global convergence
Kurdyka-Łojasiewicz property
Primal-dual gradient algorithm
Structured nonconvex and nonsmooth problem
Title An accelerated preconditioned primal-dual gradient algorithm for structured nonconvex optimization problems
URI https://dx.doi.org/10.1016/j.cnsns.2025.109480
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  issn: 1007-5704
  databaseCode: AIEXJ
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016954
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIdeuhdNN_DQm8pAErUejSJd3MIo0BTwTSApylFq04FlBf6mfGVGJEXLTRE0h14EipAogfMwnCHfzCD0XkZlmUQ8IWkmKYEGJTwAZSglTbKSBpL7pthEOp1ms1n-YzS66mNhLhepUtl2m1_8V1FDHwi7C529g7jdoNABbRA6XEHscP0nwY-Vx4SA1aRLAqGTAIDLW5qURN1tvWQLoiOw5mvN9-o2feerdb05W2rSoUkp23bEdLVSmpa-9VagWpY2ZtOzVWiaoWW7F2miSbbKZOFga6-PHepgplpzRrTwmnppa4c5VpDlB88As2TSuv6pOUSZ1Ix8r13v51Wrj1bOdg_-bFX__px8Y_VwTyN0NGinhrsN1Dg1hYmdno7pQNMG4JeaGlA3FgGzH3F-LFSjuozsYXy8e3o_5fYfS6EjKPbct_NCD1J0gxRmkHvoMEzjHDTo4fjryWzizqySXNfcc__e57jSbMIb__J3O2hg25w-Rg-tU4LHBkxP0Eiqp-iRdVCwVf_NM_R7rPAAW3gfW3iALdxjCztsYcAW3mELO2zhIbZwj63n6Nenk9OPX4it1kFEkPobwpKK8or7nEVVlFUBC0vGOI8oZWBz-7GgNJR5GcuKBZmfyYoKGgpBfcFkQFNOX6AD-LJ8iTAvOc9llPssSSNZsqwEx4KWPrQysNjjI_Shn7viwiRlKW6R2BFK-vktLOCNvVgAYm578dXdvvMaPdiB-Q06gBmVb9F9cbmpm_U7C5drlZ2iuw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accelerated+preconditioned+primal-dual+gradient+algorithm+for+structured+nonconvex+optimization+problems&rft.jtitle=Communications+in+nonlinear+science+%26+numerical+simulation&rft.au=Long%2C+Xian-Jun&rft.au=Nie%2C+Jia-Lin&rft.au=Gou%2C+Zhun&rft.au=Sun%2C+Xiang-Kai&rft.date=2026-02-01&rft.issn=1007-5704&rft.volume=153&rft.spage=109480&rft_id=info:doi/10.1016%2Fj.cnsns.2025.109480&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cnsns_2025_109480
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1007-5704&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1007-5704&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1007-5704&client=summon