Hybrid machine learning for stock price prediction in the Moroccan banking sector

Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction models. This study uses machine learning regression algorithms and feature selection methods to optimize a simulated stock price prediction model...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of electrical and computer engineering (Malacca, Malacca) Ročník 14; číslo 3; s. 3197
Hlavní autoři: Itri, Bouzgarne, Mohamed, Youssfi, Omar, Bouattane, Latifa, El Madani, Lahcen, Moumoun, Adil, Oualid
Médium: Journal Article
Jazyk:angličtina
Vydáno: 01.06.2024
ISSN:2088-8708, 2722-2578
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Analyzing historical stock market data using machine-learning techniques is crucial for data scientists and researchers to optimize stock price prediction models. This study uses machine learning regression algorithms and feature selection methods to optimize a simulated stock price prediction model using real historical data from Bank of Africa, a Moroccan bank. The approach compares multiple supervised regression algorithms, such as linear regression, extreme gradient boosting, ordinary least squared, random forest regressor, a linear least-squares L2-regularized, epsilon-support vector regression, and linear support vector regression. Each of these algorithms is associated with different feature selection algorithms to improve the performance of the prediction model. The analysis results revealed that hybridizing algorithms between the highest score percentiles, univariate linear regression, and linear support vector regression perform better according to the root mean squared error and R2-Score measures. This approach overcomes the problems associated with high-dimensional data by reducing the number of features and improving prediction accuracy.
ISSN:2088-8708
2722-2578
DOI:10.11591/ijece.v14i3.pp3197-3207