Submodular + Supermodular function maximization with knapsack constraint
We investigate a class of non-submodular function optimization problems, specifically maximizing the sum of a normalized monotone submodular function f and a normalized monotone supermodular function g under a knapsack constraint. By utilizing the total curvature κf of f and the supermodular curvatu...
Gespeichert in:
| Veröffentlicht in: | Discrete Applied Mathematics Jg. 377; S. 113 - 133 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
31.12.2025
|
| Schlagworte: | |
| ISSN: | 0166-218X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We investigate a class of non-submodular function optimization problems, specifically maximizing the sum of a normalized monotone submodular function f and a normalized monotone supermodular function g under a knapsack constraint. By utilizing the total curvature κf of f and the supermodular curvature κg of g, we demonstrate that this problem can achieve a near-optimal solution through three approaches: a greedy algorithm, an iterated submodular+modular procedure and a sandwich method. In particular, we prove that both the greedy algorithm and the iterated submodular+modular procedure provide an approximation guarantee of 1κf(1−e−(1−κg)κf), while the sandwich method achieves a (1−κg)(1−κfe)-approximation ratio. All proposed algorithms run in polynomial time, and parameters such as κf and κg can be computed efficiently in linear time. Additionally, all three algorithms yield a (1−κg)-approximation performance for knapsack-constrained monotone supermodular function maximization. Finally, we empirically test our first two algorithms on a constructed application. Although both algorithms have the same theoretical guarantee, their practical behavior differs significantly, leading to distinct solutions. |
|---|---|
| ISSN: | 0166-218X |
| DOI: | 10.1016/j.dam.2025.06.062 |