The Mixed Binary Euclid Algorithm

We present a new GCD algorithm for two integers that combines both the Euclidean and the binary gcd approaches. We give its worst case time analysis and we prove that its bit-time complexity is still O ( n 2 ) for two n-bit integers in the worst case. Our preliminar experiments show a potential spee...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronic notes in discrete mathematics Ročník 35; s. 169 - 176
Hlavní autor: Sedjelmaci, Sidi Mohamed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.12.2009
Témata:
ISSN:1571-0653, 1571-0653
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new GCD algorithm for two integers that combines both the Euclidean and the binary gcd approaches. We give its worst case time analysis and we prove that its bit-time complexity is still O ( n 2 ) for two n-bit integers in the worst case. Our preliminar experiments show a potential speedup for small integers. A parallel version matches the best presently known time complexity, namely O ( n / log n ) time with O ( n 1 + ϵ ) processors, for any constant ϵ > 0 .
ISSN:1571-0653
1571-0653
DOI:10.1016/j.endm.2009.11.029