The Mixed Binary Euclid Algorithm
We present a new GCD algorithm for two integers that combines both the Euclidean and the binary gcd approaches. We give its worst case time analysis and we prove that its bit-time complexity is still O ( n 2 ) for two n-bit integers in the worst case. Our preliminar experiments show a potential spee...
Gespeichert in:
| Veröffentlicht in: | Electronic notes in discrete mathematics Jg. 35; S. 169 - 176 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2009
|
| Schlagworte: | |
| ISSN: | 1571-0653, 1571-0653 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | We present a new GCD algorithm for two integers that combines both the Euclidean and the binary gcd approaches. We give its worst case time analysis and we prove that its bit-time complexity is still
O
(
n
2
)
for two
n-bit integers in the worst case. Our preliminar experiments show a potential speedup for small integers. A parallel version matches the best presently known time complexity, namely
O
(
n
/
log
n
)
time with
O
(
n
1
+
ϵ
)
processors, for any constant
ϵ
>
0
. |
|---|---|
| ISSN: | 1571-0653 1571-0653 |
| DOI: | 10.1016/j.endm.2009.11.029 |