Fast solution of large N× N matrix equations in an MIMD–SIMD Hybrid System
In this paper, we propose a new high-speed computation algorithm for solving a large N× N matrix system using the MIMD–SIMD Hybrid System. The MIMD–SIMD Hybrid System (also denoted as Hybrid System in this paper) is a new parallel architecture consisting of a combination of Cluster of Workstations (...
Uložené v:
| Vydané v: | Parallel computing Ročník 29; číslo 11; s. 1669 - 1684 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.11.2003
|
| Predmet: | |
| ISSN: | 0167-8191, 1872-7336 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | In this paper, we propose a new high-speed computation algorithm for solving a large
N×
N matrix system using the MIMD–SIMD Hybrid System. The MIMD–SIMD Hybrid System (also denoted as Hybrid System in this paper) is a new parallel architecture consisting of a combination of Cluster of Workstations (COWs) and SIMD systems working concurrently to produce an optimal parallel computation. We first introduce our prototype SIMD system and our Hybrid System setup before presenting how it can be implemented to find the unknowns in a large
N×
N linear matrix equation system using the
Gauss–LU algorithm. This algorithm basically performs the ‘Divide and Conquer’ approach by breaking down the large
N×
N matrix system into a manageable 32
×
32 matrix for fast computation. |
|---|---|
| ISSN: | 0167-8191 1872-7336 |
| DOI: | 10.1016/j.parco.2003.05.011 |