Fast solution of large N× N matrix equations in an MIMD–SIMD Hybrid System

In this paper, we propose a new high-speed computation algorithm for solving a large N× N matrix system using the MIMD–SIMD Hybrid System. The MIMD–SIMD Hybrid System (also denoted as Hybrid System in this paper) is a new parallel architecture consisting of a combination of Cluster of Workstations (...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Parallel computing Ročník 29; číslo 11; s. 1669 - 1684
Hlavní autoři: Chin Sim, Leo, Leedham, Graham, Chin Jian, Leo, Schroder, Heiko
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2003
Témata:
ISSN:0167-8191, 1872-7336
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a new high-speed computation algorithm for solving a large N× N matrix system using the MIMD–SIMD Hybrid System. The MIMD–SIMD Hybrid System (also denoted as Hybrid System in this paper) is a new parallel architecture consisting of a combination of Cluster of Workstations (COWs) and SIMD systems working concurrently to produce an optimal parallel computation. We first introduce our prototype SIMD system and our Hybrid System setup before presenting how it can be implemented to find the unknowns in a large N× N linear matrix equation system using the Gauss–LU algorithm. This algorithm basically performs the ‘Divide and Conquer’ approach by breaking down the large N× N matrix system into a manageable 32 × 32 matrix for fast computation.
ISSN:0167-8191
1872-7336
DOI:10.1016/j.parco.2003.05.011