Simple amplifier configuration algorithm for dynamic C + L-band systems in the presence of stimulated Raman scattering

We propose a simple two-step amplifier configuration algorithm based on signal power across different channels to improve the generalized signal-to-noise ratio (GSNR) performance of dynamic C + L-band links in the presence of amplifier spontaneous emission (ASE) noise, Kerr nonlinearity, and stimula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters Jg. 47; H. 18; S. 4712
Hauptverfasser: Song, Yuchen, Fan, Qirui, Lu, Chao, Wang, Danshi, Lau, Alan Pak Tao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 15.09.2022
ISSN:1539-4794, 1539-4794
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a simple two-step amplifier configuration algorithm based on signal power across different channels to improve the generalized signal-to-noise ratio (GSNR) performance of dynamic C + L-band links in the presence of amplifier spontaneous emission (ASE) noise, Kerr nonlinearity, and stimulated Raman scattering (SRS) using erbium-doped fiber amplifiers (EDFA). In step 1, ASE noise and Kerr nonlinearity are taken into account to derive sub-optimal signal power profiles at the beginning of each span using the local optimization global optimization (LOGO) strategy. The effect of SRS is compensated through amplifier gain pre-tilt in step 2. Simulations for links with homogeneous/heterogeneous spans, static full-channel loading, and dynamic loading due to gradual channel additions for C + L-band upgrades show that the proposed algorithm can achieve similar GSNR performance, but requires much less execution time, compared to other iterative methods that target for improving the GSNR across the C + L band, thus making it a fast and efficient GSNR management strategy for future dynamic C + L-band networks.We propose a simple two-step amplifier configuration algorithm based on signal power across different channels to improve the generalized signal-to-noise ratio (GSNR) performance of dynamic C + L-band links in the presence of amplifier spontaneous emission (ASE) noise, Kerr nonlinearity, and stimulated Raman scattering (SRS) using erbium-doped fiber amplifiers (EDFA). In step 1, ASE noise and Kerr nonlinearity are taken into account to derive sub-optimal signal power profiles at the beginning of each span using the local optimization global optimization (LOGO) strategy. The effect of SRS is compensated through amplifier gain pre-tilt in step 2. Simulations for links with homogeneous/heterogeneous spans, static full-channel loading, and dynamic loading due to gradual channel additions for C + L-band upgrades show that the proposed algorithm can achieve similar GSNR performance, but requires much less execution time, compared to other iterative methods that target for improving the GSNR across the C + L band, thus making it a fast and efficient GSNR management strategy for future dynamic C + L-band networks.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1539-4794
1539-4794
DOI:10.1364/OL.465942