An Efficient Parallel and Distributed Algorithm on Top of MapReduce

The undertaking of subspace bunching is for discover concealed groups present in various subspaces inside of dataset. Lately, through the accumulate development of information extent as well as information measurements, conventional subspace grouping calculations convert wasteful just as ineffectual...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of innovative technology and exploring engineering Ročník 8; číslo 10; s. 908 - 911
Hlavní autoři: Karuna, G., Krishna, I. Rama, Reddy, G. Venkata Rami
Médium: Journal Article
Jazyk:angličtina
Vydáno: 30.08.2019
ISSN:2278-3075, 2278-3075
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The undertaking of subspace bunching is for discover concealed groups present in various subspaces inside of dataset. Lately, through the accumulate development of information extent as well as information measurements, conventional subspace grouping calculations convert wasteful just as ineffectual whereas extricating learning in the huge information condition, bringing about a rising need to structure productive parallel circulated subspace bunching calculations to deal with huge multi- dimensional information by an adequate calculus expense. This article provides MapReduce-dependent calculation of a parallel mafia subspace bunching. The calculation exploits MapReduce's information apportioning in addition undertaking parallelism and accomplishes decent tradeoff amongst the expense for plate gets to besides correspondence fare. The exploratory results indicate near immediate accelerations and demonstrate the elevated adaptability and incredible opportunities for implementation of the suggested calculation.
ISSN:2278-3075
2278-3075
DOI:10.35940/ijitee.J9075.0881019