Contrastive Attention-Based Network for Self-Supervised Point Cloud Completion

Point cloud completion aims to reconstruct complete 3D shapes from partial observations, often requiring multiple views or complete data for training. In this paper, we propose an attention-driven, self-supervised autoencoder network that completes 3D point clouds from a single partial observation....

Full description

Saved in:
Bibliographic Details
Published in:IEEE signal processing letters Vol. 32; pp. 4444 - 4448
Main Authors: Kumari, Seema, Kumar, Preyum, Mandal, Srimanta, Raman, Shanmuganathan
Format: Journal Article
Language:English
Published: New York IEEE 2025
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1070-9908, 1558-2361
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Point cloud completion aims to reconstruct complete 3D shapes from partial observations, often requiring multiple views or complete data for training. In this paper, we propose an attention-driven, self-supervised autoencoder network that completes 3D point clouds from a single partial observation. Multi-head self-attention captures robust contextual relationships, while residual connections in the autoencoder enhance geometric feature learning. In addition to this, we incorporate a contrastive learning-based loss, which encourages the network to better distinguish structural patterns even in highly incomplete observations. Experimental results on benchmark datasets demonstrate that the proposed approach achieves state-of-the-art performance in single-view point cloud completion.
AbstractList Point cloud completion aims to reconstruct complete 3D shapes from partial observations, often requiring multiple views or complete data for training. In this paper, we propose an attention-driven, self-supervised autoencoder network that completes 3D point clouds from a single partial observation. Multi-head self-attention captures robust contextual relationships, while residual connections in the autoencoder enhance geometric feature learning. In addition to this, we incorporate a contrastive learning-based loss, which encourages the network to better distinguish structural patterns even in highly incomplete observations. Experimental results on benchmark datasets demonstrate that the proposed approach achieves state-of-the-art performance in single-view point cloud completion.
Author Kumar, Preyum
Kumari, Seema
Raman, Shanmuganathan
Mandal, Srimanta
Author_xml – sequence: 1
  givenname: Seema
  orcidid: 0000-0003-3305-6871
  surname: Kumari
  fullname: Kumari, Seema
  email: seema.kumari@iitgn.ac.in
  organization: Department of Electrical Engineering, IIT Gandhinagar, Gandhinagar, India
– sequence: 2
  givenname: Preyum
  orcidid: 0000-0001-5622-1468
  surname: Kumar
  fullname: Kumar, Preyum
  email: preyum.kumar@iitgn.ac.in
  organization: Department of Electrical Engineering, IIT Gandhinagar, Gandhinagar, India
– sequence: 3
  givenname: Srimanta
  orcidid: 0000-0003-3871-6621
  surname: Mandal
  fullname: Mandal, Srimanta
  email: srimanta_mandal@dau.ac.in
  organization: Dhirubhai Ambani University (formerly DA-IICT), Gandhinagar, India
– sequence: 4
  givenname: Shanmuganathan
  orcidid: 0000-0003-2718-7891
  surname: Raman
  fullname: Raman, Shanmuganathan
  email: shanmuga@iitgn.ac.in
  organization: Department of Electrical Engineering, IIT Gandhinagar, Gandhinagar, India
BookMark eNpFkF1LwzAUhoNMcJvee-FFwevMfDe5nMUvGHMwvQ5ZmkJn19QknfjvbdnAq3PgPO974JmBSetbB8AtRguMkXpYbTcLgghfUEExI-wCTDHnEhIq8GTYUY6gUkhegVmMe4SQxJJPwbrwbQompvrosmVKrk21b-Gjia7M1i79-PCVVT5kW9dUcNt3Lhzr8bbxdZuyovF9mRX-0DVuDF6Dy8o00d2c5xx8Pj99FK9w9f7yVixX0GJBElSk2pUSWW6UEoTREhGKDLOK70gpFGaK212ucs6kFYJSbC3OMTeScmpKV9E5uD_1dsF_9y4mvfd9aIeXmpJcIDa04oFCJ8oGH2Nwle5CfTDhV2OkR2t6sKZHa_psbYjcnSK1c-4fx4QqJgn9AxxfaYs
CODEN ISPLEM
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2025
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/LSP.2025.3631424
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 4448
ExternalDocumentID 10_1109_LSP_2025_3631424
11239482
Genre orig-research
GrantInformation_xml – fundername: Jibaben Patel Chair in Artificial Intelligence, IIT Gandhinagar, India
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AASAJ
AAWTH
AAYJJ
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c162t-92fbd80c5a996243d0230a4c95b2d691495cb797548c66331cc1715a8353adef3
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Thu Nov 27 15:42:55 EST 2025
Sat Nov 29 06:50:42 EST 2025
Wed Dec 10 09:47:03 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c162t-92fbd80c5a996243d0230a4c95b2d691495cb797548c66331cc1715a8353adef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3871-6621
0000-0003-2718-7891
0000-0003-3305-6871
0000-0001-5622-1468
PQID 3276046241
PQPubID 75747
PageCount 5
ParticipantIDs ieee_primary_11239482
proquest_journals_3276046241
crossref_primary_10_1109_LSP_2025_3631424
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2025
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0008185
Score 2.4386249
Snippet Point cloud completion aims to reconstruct complete 3D shapes from partial observations, often requiring multiple views or complete data for training. In this...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 4444
SubjectTerms and self-supervision
Auto-encoder
Autoencoders
contrastive learning
Decoding
Image reconstruction
multi-head self-attention
Noise
point cloud completion
Point cloud compression
Semantics
Shape
Surface reconstruction
Three dimensional models
Three-dimensional displays
Training
Transformers
Title Contrastive Attention-Based Network for Self-Supervised Point Cloud Completion
URI https://ieeexplore.ieee.org/document/11239482
https://www.proquest.com/docview/3276046241
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagYoCBZxGFgjKwMLhN4iS2x1JRMaCqUkHqFjm2I1WqkqpN-P3cOSkPIQa2SHkourO_-z777kzIvR9F2gLMUQjuIFCUMjQTPqM6zoUJtYEx5LvDJvh0KhYLOWuL1V0tjLXWJZ_ZAV66vXxT6hqXyobADZiMBCDuPudJU6z1CbsYeZoEQ58CxIrdnqQvhy_zGSjBMB6whGFl148Y5A5V-YXELrxMTv75Y6fkuOWR3qhx_BnZs8U5OfrWXfCCTLHz1EZtEdC8UVU1iY30EeKW8aZN-rcHnNWb21VO5_UaYQPvzcplUXnjVVkbD_EC-3OXRZe8TZ5ex8-0PT6B6iAJKyrDPDPC17ECTRNGzKDcUJGWcRaaRKI00hmXHDSLBt7BAq0DHsQKOBlTxubsknSKsrBXxEtUrDUHHwKdijgPFA9MLmCuW2BbIst75GFn0HTddMlInbrwZQrGT9H4aWv8HumiAb-ea23XI_2dC9J2Hm1TFvIEy2ej4PqP127IIX69WRXpk061qe0tOdDv1XK7uXND5APoxLf2
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yBfXgz4nTqT148ZAtbdImPc7hmDjLYBN2K2mSwmC0Y-v8-31pO38gHrwV2tLyXvK970vee0HonjCmDMAchuAOAkVKjRNBKFZ-KrSnNIwhUh42waNIzGbhuC5WL2thjDFl8pnp2MtyL1_namOXyrrADWjIBCDurs-YR6pyrU_gtbGnSjEkGEBWbHclSdgdTcagBT2_QwNqa7t-RKHyWJVfWFwGmMHxP3_tBB3VTNLpVa4_RTsmO0OH3_oLnqPI9p5aybWFNKdXFFVqI36EyKWdqEoAd4C1OhOzSPFks7TAYe-N83lWOP1FvtGORQzboTvPmuht8DTtD3F9gAJWbuAVOPTSRAuifAmqxmNUW8EhmQr9xNNBaMWRSnjIQbUoYB7UVcrlri-BlVGpTUovUCPLM3OJnED6SnHwIhAqxrkruatTAbPdAN8SSdpCD1uDxsuqT0Zc6gsSxmD82Bo_ro3fQk1rwK_natu1UHvrgrieSeuYejywBbTMvfrjtTu0P5y-juLRc_RyjQ7sl6o1kjZqFKuNuUF76r2Yr1e35XD5AKnNuz0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contrastive+Attention-Based+Network+for+Self-Supervised+Point+Cloud+Completion&rft.jtitle=IEEE+signal+processing+letters&rft.au=Kumari%2C+Seema&rft.au=Kumar%2C+Preyum&rft.au=Mandal%2C+Srimanta&rft.au=Raman%2C+Shanmuganathan&rft.date=2025&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=32&rft.spage=4444&rft.epage=4448&rft_id=info:doi/10.1109%2FLSP.2025.3631424&rft.externalDocID=11239482
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon