Continuum Robot Segments With High Output Stiffness via Diagonal Backbones

Continuum robots offer unique advantages for applications such as minimally invasive surgery, navigation through confined environments, and safe human-robot interaction. However, while most continuum robot segments are designed to exhibit constant curvature over their length, they passively deform i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters Vol. 11; no. 1; pp. 490 - 497
Main Authors: Eisenhauer, Ethan, Milam, Eli, Gaston, Joshua, Rucker, Caleb
Format: Journal Article
Language:English
Published: Piscataway IEEE 01.01.2026
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:2377-3766, 2377-3766
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Continuum robots offer unique advantages for applications such as minimally invasive surgery, navigation through confined environments, and safe human-robot interaction. However, while most continuum robot segments are designed to exhibit constant curvature over their length, they passively deform into a non-constant curvature s-shape when holding payloads at the tip, and their dynamic movement is often subject to unwanted vibration of the passive non-constant curvature modes. In this letter, we propose a simple solution to dramatically improve these issues: a continuum robot segment design that utilizes a diagonal backbone and flexible push-pull actuation rods. This simple modification to common continuum-robot construction enables us to eliminate the passive s-shaped mode, creating a bending segment that can handle large loads without significant deformation or vibration while requiring no more actuation force than conventional designs. We show that a modified version of 1-DOF constant-curvature kinematics accurately describes the structure when actuator translations are equal and opposite. We also develop and validate a 2-DOF model that predicts tip position and orientation resulting from more general actuation inputs. The models and increased output stiffness were verified experimentally and the concept was demonstrated on a multi-segment robot following a 3D trajectory with minimal disturbance from added loads.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2377-3766
2377-3766
DOI:10.1109/LRA.2025.3629942