Narasimhan–Simha-type metrics on strongly pseudoconvex domains in ℂn

For a bounded domain , let denote the Bergman kernel on the diagonal and consider the reproducing kernel Hilbert space of holomorphic functions on D that are square integrable with respect to the weight , where is an integer. The corresponding weighted kernel transforms appropriately under biholomor...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex variables and elliptic equations Ročník 68; číslo 9; s. 1626 - 1652
Hlavní autoři: Borah, Diganta, Verma, Kaushal
Médium: Journal Article
Jazyk:angličtina
Vydáno: Colchester Taylor & Francis Ltd 02.09.2023
Témata:
ISSN:1747-6933, 1747-6941
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For a bounded domain , let denote the Bergman kernel on the diagonal and consider the reproducing kernel Hilbert space of holomorphic functions on D that are square integrable with respect to the weight , where is an integer. The corresponding weighted kernel transforms appropriately under biholomorphisms and hence produces an invariant Kähler metric on D. Thus, there is a hierarchy of such metrics starting with the classical Bergman metric that corresponds to the case d = 0. This note is an attempt to study this class of metrics in much the same way as the Bergman metric has been with a view towards identifying properties that are common to this family. When D is strongly pseudoconvex, the scaling principle is used to obtain the boundary asymptotics of these metrics and several invariants associated with them. It turns out that all these metrics are complete on strongly pseudoconvex domains.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1747-6933
1747-6941
DOI:10.1080/17476933.2022.2069758