Deep Learning Hyper Parameter Optimization for Video Analytic in Centralized System

A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage, preprocessed, and a model for supporting order is created on these video streams utilizing cloud-based framework. A key spotlight in this paper is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of engineering and advanced technology Jg. 9; H. 1; S. 7300 - 7305
Hauptverfasser: V., Arun, Bhattacharjee, Shuvam, Khandelwal, Ritik, Malik, Kanishk
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 30.10.2019
ISSN:2249-8958, 2249-8958
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage, preprocessed, and a model for supporting order is created on these video streams utilizing cloud-based framework. A key spotlight in this paper is on tuning hyper-parameters related with the profound learning calculation used to build the model. We further propose a programmed video object order pipeline to approve the framework. The scientific model used to help hyper-parameter tuning improves execution of the proposed pipeline, and results of different parameters on framework's presentation is analyzed. Along these lines, the parameters that contribute toward the most ideal presentation are chosen for the video object order pipeline. Our examination based approval uncovers an exactness and accuracy of 97% and 96%, separately. The framework demonstrated to be adaptable, strong, and adjustable for a wide range of utilizations.
ISSN:2249-8958
2249-8958
DOI:10.35940/ijeat.A1215.109119