Deep Learning Hyper Parameter Optimization for Video Analytic in Centralized System
A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage, preprocessed, and a model for supporting order is created on these video streams utilizing cloud-based framework. A key spotlight in this paper is...
Saved in:
| Published in: | International journal of engineering and advanced technology Vol. 9; no. 1; pp. 7300 - 7305 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
30.10.2019
|
| ISSN: | 2249-8958, 2249-8958 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage, preprocessed, and a model for supporting order is created on these video streams utilizing cloud-based framework. A key spotlight in this paper is on tuning hyper-parameters related with the profound learning calculation used to build the model. We further propose a programmed video object order pipeline to approve the framework. The scientific model used to help hyper-parameter tuning improves execution of the proposed pipeline, and results of different parameters on framework's presentation is analyzed. Along these lines, the parameters that contribute toward the most ideal presentation are chosen for the video object order pipeline. Our examination based approval uncovers an exactness and accuracy of 97% and 96%, separately. The framework demonstrated to be adaptable, strong, and adjustable for a wide range of utilizations. |
|---|---|
| AbstractList | A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage, preprocessed, and a model for supporting order is created on these video streams utilizing cloud-based framework. A key spotlight in this paper is on tuning hyper-parameters related with the profound learning calculation used to build the model. We further propose a programmed video object order pipeline to approve the framework. The scientific model used to help hyper-parameter tuning improves execution of the proposed pipeline, and results of different parameters on framework's presentation is analyzed. Along these lines, the parameters that contribute toward the most ideal presentation are chosen for the video object order pipeline. Our examination based approval uncovers an exactness and accuracy of 97% and 96%, separately. The framework demonstrated to be adaptable, strong, and adjustable for a wide range of utilizations. |
| Author | Malik, Kanishk Khandelwal, Ritik V., Arun Bhattacharjee, Shuvam |
| Author_xml | – sequence: 1 givenname: Arun surname: V. fullname: V., Arun – sequence: 2 givenname: Shuvam surname: Bhattacharjee fullname: Bhattacharjee, Shuvam – sequence: 3 givenname: Ritik surname: Khandelwal fullname: Khandelwal, Ritik – sequence: 4 givenname: Kanishk surname: Malik fullname: Malik, Kanishk |
| BookMark | eNpNkL1ugzAUha0qlZqmeYIufgGozcWAR0R_UgkpldJ2RcZcKkdgkPFCnr6IdOhZvqMznOG7Jxs7WCTkkbMQhIzZkzmj8mHOIy5CziTn8oZsoyiWQSZFtvnX78h-ms5sSSoiYHxLTs-IIy1ROWvsDz3MIzr6oZzq0S_tOHrTm4vyZrC0HRz9Ng0ONLeqm73R1FhaoPVOdeaCDT3Nk8f-gdy2qptw_8cd-Xp9-SwOQXl8ey_yMtBcSBnUsQaENlE6SkBjzNuaJ00S11KihjbDtNYsEyAAoE5UrBO2jDxdoJo6TWFH4Pqr3TBNDttqdKZXbq44q1Y11aqmWtVUVzXwC-DdWxM |
| ContentType | Journal Article |
| CorporateAuthor | Assistant Professor, Department of Computer Science Engineering,SRM Institute of Science & Technology, Chennai, India Department of Computer Science Engineering SRM Institute of Science & Technology Chennai, India |
| CorporateAuthor_xml | – name: Assistant Professor, Department of Computer Science Engineering,SRM Institute of Science & Technology, Chennai, India – name: Department of Computer Science Engineering SRM Institute of Science & Technology Chennai, India |
| DBID | AAYXX CITATION |
| DOI | 10.35940/ijeat.A1215.109119 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2249-8958 |
| EndPage | 7305 |
| ExternalDocumentID | 10_35940_ijeat_A1215_109119 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c1599-b4c3e3f6ac263ce41fb16d64b99ec3f8e7bc08535333b6a4c60f8e1760fadb773 |
| ISSN | 2249-8958 |
| IngestDate | Sat Nov 29 02:52:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1599-b4c3e3f6ac263ce41fb16d64b99ec3f8e7bc08535333b6a4c60f8e1760fadb773 |
| OpenAccessLink | https://doi.org/10.35940/ijeat.a1215.109119 |
| PageCount | 6 |
| ParticipantIDs | crossref_primary_10_35940_ijeat_A1215_109119 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-30 |
| PublicationDateYYYYMMDD | 2019-10-30 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-30 day: 30 |
| PublicationDecade | 2010 |
| PublicationTitle | International journal of engineering and advanced technology |
| PublicationYear | 2019 |
| SSID | ssj0000752301 |
| Score | 2.08377 |
| Snippet | A framework to perform video examination is proposed utilizing a powerfully tuned convolutional arrange. Recordings are gotten from distributed storage,... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 7300 |
| Title | Deep Learning Hyper Parameter Optimization for Video Analytic in Centralized System |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2249-8958 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000752301 issn: 2249-8958 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELa20EMvbelD0Jd86I2GJnHWjo_QhzgArVqKuEW247DhEVZLdot64Pf1Z3XGTrKBRVU59JJNrNXI2fl2Xpr5TMjbtBBJqnkY2FSxIDEiD1QkNWBZJdzEmhepGxTeEXt76eGh_DoY_G5nYWanoqrSy0s5_q-qhjVQNo7O3kHdnVBYgHtQOlxB7XD9J8V_tHbc0qYerW9DnjmBOBF7sJAP8QuYiLNm9tK1GB6UuT333CTI3YpDgL7gW_7CWNQRPfcj2OslxB7xhJ0zG3oG2La7oF6o3h94kzSZdsjcGqm6VjgCdtww94-mM3XWuQOs79vTn-50gvVvZV12A0a7sNMT3xdSlRejk34ZI5LO_odzawehhAxS6XncN-wta425lguo9KYXifd7bhweh7e5CDaUCTZVlsfg6zY2kVwDKbWixnBfI-S-4Si79kVInJyYzAnJnJDMC7lHlmMxlNhcuHs1r_ZBYAa5Hmb_3Tt5Ciwn5_3iZnphUi_e2X9MHjaJCt30AFshA1s9IY_aQ0Bo4xOeku-IN9rijTq80Q5vtI83CnijDm-0xRstK9rDG_V4e0Z-fP60_2E7aE7qCAyEwzLQiWGWFVyZmDNjk6jQEc95oqW0hsHfXWgDsT2D3IJprhLDQ1iMBHyoXAvBnpOl6ryyq4RCxhwX8bCI0LnAvQoxwg1ZnkowKcKukXftD5ONPSFL9hd9vLjb11-SB3NwviJL9WRqX5P7ZlaXF5M3Tqd_AAJWhx0 |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Hyper+Parameter+Optimization+for+Video+Analytic+in+Centralized+System&rft.jtitle=International+journal+of+engineering+and+advanced+technology&rft.au=V.%2C+Arun&rft.au=Bhattacharjee%2C+Shuvam&rft.au=Khandelwal%2C+Ritik&rft.au=Malik%2C+Kanishk&rft.date=2019-10-30&rft.issn=2249-8958&rft.eissn=2249-8958&rft.volume=9&rft.issue=1&rft.spage=7300&rft.epage=7305&rft_id=info:doi/10.35940%2Fijeat.A1215.109119&rft.externalDBID=n%2Fa&rft.externalDocID=10_35940_ijeat_A1215_109119 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2249-8958&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2249-8958&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2249-8958&client=summon |