A Parametric Kernel Function Generating the best Known Iteration Bound for Large-Update Methods for CQSDO

In this paper, we propose a large-update primal-dual interior point algorithm for convex quadratic semidefiniteoptimization (CQSDO) based on a new parametric kernel function. This kernel function is a parameterized version of the kernel function introduced by M.W. Zhang (Acta Mathematica Sinica. 28:...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Statistics, optimization & information computing Ročník 8; číslo 4; s. 876 - 889
Hlavní autoři: Loubna, Guerra, Mohamed, Achache
Médium: Journal Article
Jazyk:angličtina
Vydáno: 24.09.2020
ISSN:2311-004X, 2310-5070
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we propose a large-update primal-dual interior point algorithm for convex quadratic semidefiniteoptimization (CQSDO) based on a new parametric kernel function. This kernel function is a parameterized version of the kernel function introduced by M.W. Zhang (Acta Mathematica Sinica. 28: 2313-2328, 2012) for CQSDO. The investigation according to it generating the best known iteration bound O for large-update methods. Thus improves the iteration bound obtained by Zhang for large-update methods. Finally, we present few numerical results to show the efficiency of the proposed algorithm.
ISSN:2311-004X
2310-5070
DOI:10.19139/soic-2310-5070-842