A Parametric Kernel Function Generating the best Known Iteration Bound for Large-Update Methods for CQSDO
In this paper, we propose a large-update primal-dual interior point algorithm for convex quadratic semidefiniteoptimization (CQSDO) based on a new parametric kernel function. This kernel function is a parameterized version of the kernel function introduced by M.W. Zhang (Acta Mathematica Sinica. 28:...
Uloženo v:
| Vydáno v: | Statistics, optimization & information computing Ročník 8; číslo 4; s. 876 - 889 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
24.09.2020
|
| ISSN: | 2311-004X, 2310-5070 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a large-update primal-dual interior point algorithm for convex quadratic semidefiniteoptimization (CQSDO) based on a new parametric kernel function. This kernel function is a parameterized version of the kernel function introduced by M.W. Zhang (Acta Mathematica Sinica. 28: 2313-2328, 2012) for CQSDO. The investigation according to it generating the best known iteration bound O for large-update methods. Thus improves the iteration bound obtained by Zhang for large-update methods. Finally, we present few numerical results to show the efficiency of the proposed algorithm. |
|---|---|
| ISSN: | 2311-004X 2310-5070 |
| DOI: | 10.19139/soic-2310-5070-842 |