Machine learning software to learn negligible elements of the Hamiltonian matrix

As a follow-up to our recent Communication in the Journal of Chemical Physics [J. Chem. Phys. 159 071101 (2023)], we report and make available the Jupyter Notebook software here. This software performs binary machine learning classification (MLC) with the goal of learning negligible Hamiltonian matr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Artificial intelligence chemistry Jg. 1; H. 2; S. 100025
Hauptverfasser: Qu, Chen, Houston, Paul L., Yu, Qi, Pandey, Priyanka, Conte, Riccardo, Nandi, Apurba, Bowman, Joel M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier 01.12.2023
Schlagworte:
ISSN:2949-7477, 2949-7477
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a follow-up to our recent Communication in the Journal of Chemical Physics [J. Chem. Phys. 159 071101 (2023)], we report and make available the Jupyter Notebook software here. This software performs binary machine learning classification (MLC) with the goal of learning negligible Hamiltonian matrix elements for vibrational dynamics. We illustrate its usefulness for a Hamiltonian matrix for H2O by using three MLC algorithms: Random Forest, Support Vector Machine, and Multi-layer Perceptron.
ISSN:2949-7477
2949-7477
DOI:10.1016/j.aichem.2023.100025