Probabilistic Logic Programming Semantics For Procedural Content Generation

Research in procedural content generation (PCG) has recently heralded two major methodologies: machine learning (PCGML) and declarative programming. The former shows promise by automating the specification of quality criteria through latent patterns in data, while the latter offers significant advan...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment Ročník 19; číslo 1; s. 295 - 305
Hlavní autoři: Madkour, Abdelrahman, Martens, Chris, Holtzen, Steven, Harteveld, Casper, Marsella, Stacy
Médium: Journal Article
Jazyk:angličtina
Vydáno: 06.10.2023
ISSN:2326-909X, 2334-0924
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Research in procedural content generation (PCG) has recently heralded two major methodologies: machine learning (PCGML) and declarative programming. The former shows promise by automating the specification of quality criteria through latent patterns in data, while the latter offers significant advantages for authorial control. In this paper we propose the use of probabilistic logic as a unifying framework that combines the benefits of both methodologies. We propose a Bayesian formalization of content generators as probability distributions and show how common PCG tasks map naturally to operations on the distribution. Further, through a series of experiments with maze generation, we demonstrate how probabilistic logic semantics allows us to leverage the authorial control of declarative programming and the flexibility of learning from data.
ISSN:2326-909X
2334-0924
DOI:10.1609/aiide.v19i1.27525