Probabilistic Logic Programming Semantics For Procedural Content Generation

Research in procedural content generation (PCG) has recently heralded two major methodologies: machine learning (PCGML) and declarative programming. The former shows promise by automating the specification of quality criteria through latent patterns in data, while the latter offers significant advan...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment Ročník 19; číslo 1; s. 295 - 305
Hlavní autori: Madkour, Abdelrahman, Martens, Chris, Holtzen, Steven, Harteveld, Casper, Marsella, Stacy
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 06.10.2023
ISSN:2326-909X, 2334-0924
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Research in procedural content generation (PCG) has recently heralded two major methodologies: machine learning (PCGML) and declarative programming. The former shows promise by automating the specification of quality criteria through latent patterns in data, while the latter offers significant advantages for authorial control. In this paper we propose the use of probabilistic logic as a unifying framework that combines the benefits of both methodologies. We propose a Bayesian formalization of content generators as probability distributions and show how common PCG tasks map naturally to operations on the distribution. Further, through a series of experiments with maze generation, we demonstrate how probabilistic logic semantics allows us to leverage the authorial control of declarative programming and the flexibility of learning from data.
ISSN:2326-909X
2334-0924
DOI:10.1609/aiide.v19i1.27525