L 0-regularization for high-dimensional regression with corrupted data
Corrupted data appears widely in many contemporary applications including voting behavior, high-throughput sequencing and sensor networks. In this article, we consider the sparse modeling via L 0 -regularization under the framework of high-dimensional measurement error models. By utilizing the techn...
Gespeichert in:
| Veröffentlicht in: | Communications in statistics. Theory and methods Jg. 53; H. 1; S. 215 - 231 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Taylor & Francis
02.01.2024
|
| Schlagworte: | |
| ISSN: | 0361-0926, 1532-415X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!