Distributed Fleet Management in Noisy Environments via Model-Predictive Control
We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SW...
Saved in:
| Published in: | Proceedings of the International Conference on Automated Planning and Scheduling Vol. 32; pp. 565 - 573 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
13.06.2022
|
| ISSN: | 2334-0835, 2334-0843 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SWGs in the form of a Euclidean Markov Decision Process (EMDP) in the tool Uppaal Stratego, which employs Q-Learning to synthesize near-optimal plans. Furthermore, we deploy the tool in an online and distributed fashion to facilitate scalable, rapid replanning. While executing their current plan, each AMR generates a new plan incorporating updated information about the other AMRs positions and plans. We propose a two-layer Model Predictive Controller-structure (waypoint and station planning), each individually solved by the Q-learning-based solver. We demonstrate our approach using ARGoS3 large-scale robot simulation, where we simulate the AMR movement and observe an up to 27.5% improvement in makespan over a greedy approach to planning. To do so, we have implemented the full software stack, translating observations into SWGs and solving those with our proposed method. In addition, we construct a benchmark platform for comparing planning techniques on a reasonably realistic physical simulation and provide this under the MIT open-source license. |
|---|---|
| AbstractList | We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SWGs in the form of a Euclidean Markov Decision Process (EMDP) in the tool Uppaal Stratego, which employs Q-Learning to synthesize near-optimal plans. Furthermore, we deploy the tool in an online and distributed fashion to facilitate scalable, rapid replanning. While executing their current plan, each AMR generates a new plan incorporating updated information about the other AMRs positions and plans. We propose a two-layer Model Predictive Controller-structure (waypoint and station planning), each individually solved by the Q-learning-based solver. We demonstrate our approach using ARGoS3 large-scale robot simulation, where we simulate the AMR movement and observe an up to 27.5% improvement in makespan over a greedy approach to planning. To do so, we have implemented the full software stack, translating observations into SWGs and solving those with our proposed method. In addition, we construct a benchmark platform for comparing planning techniques on a reasonably realistic physical simulation and provide this under the MIT open-source license. |
| Author | Nyman, Ulrik Gjøl Jensen, Peter Guldstrand Larsen, Kim Bøgh, Simon Kristjansen, Martin |
| Author_xml | – sequence: 1 givenname: Simon surname: Bøgh fullname: Bøgh, Simon – sequence: 2 givenname: Peter surname: Gjøl Jensen fullname: Gjøl Jensen, Peter – sequence: 3 givenname: Martin surname: Kristjansen fullname: Kristjansen, Martin – sequence: 4 givenname: Kim surname: Guldstrand Larsen fullname: Guldstrand Larsen, Kim – sequence: 5 givenname: Ulrik surname: Nyman fullname: Nyman, Ulrik |
| BookMark | eNo9kMtOwzAURC1UJErpB7DzDyTY8SPJEpUWkFrKAtaWc3ODLKV2ZYdI_XvagFjN0SxGo3NLZj54JOSes5xrVj84sMeUj6JwPOd1JcUVmRdCyIydefbPQt2QZUquYVKWStdKzMn-yaUhuuZ7wJZuesSB7qy3X3hAP1Dn6Vtw6UTXfnQx-EuZ6Ogs3YUW--w9YutgcCPSVfBDDP0due5sn3D5lwvyuVl_rF6y7f75dfW4zYArJTINULBS6IK1TDZM19DZigFTTSmbDuX5YVsVTQVCgCxaxThAbTurOSgoUYsF4b-7EENKETtzjO5g48lwZi5SzCTFTFLMJEX8AKdbWYw |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1609/icaps.v32i1.19843 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2334-0843 |
| EndPage | 573 |
| ExternalDocumentID | 10_1609_icaps_v32i1_19843 |
| GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION M~E |
| ID | FETCH-LOGICAL-c1553-6cc2073620d04b069cfa80c05b74bfe4044d82b8c33c42d501cc9afa61c5c7e63 |
| ISSN | 2334-0835 |
| IngestDate | Sat Nov 29 06:38:19 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1553-6cc2073620d04b069cfa80c05b74bfe4044d82b8c33c42d501cc9afa61c5c7e63 |
| OpenAccessLink | https://ojs.aaai.org/index.php/ICAPS/article/download/19843/19602 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1609_icaps_v32i1_19843 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-13 |
| PublicationDateYYYYMMDD | 2022-06-13 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | Proceedings of the International Conference on Automated Planning and Scheduling |
| PublicationYear | 2022 |
| SSID | ssib044756953 |
| Score | 1.9157635 |
| Snippet | We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 565 |
| Title | Distributed Fleet Management in Noisy Environments via Model-Predictive Control |
| Volume | 32 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2334-0843 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib044756953 issn: 2334-0835 databaseCode: M~E dateStart: 20030101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELAgGCUpAPnEApediOcyxlAYmyrESReotsJ0GpttnVvtRe-KP8GWbsPLytkOiBS7RysrNJ5lvPeObzDCGvDTgNzBgsfanjgPEwDHQaqUAUskq10iqurKZP0slEnp1l09Hod7cXZjtLm0ZeXmaL_6pqGANl49bZW6i7FwoD8BmUDkdQOxz_SfEfsBQudrECVxK0Uq49igtGNybzenX1duxvcNvWyjZFmwXTJSZuLJ3o2JHYfe912lu7Vcct2I0oDvsHMQlxtFnPwSGG--haIzmiKOCkQAL8zz4WgOn699Kle77XFwM14NO5OzVDGk4bLNqhFNtJ6lx151xVhP7bm1mBoRz40RNYwLtLvtQXfqgDVsnYIygZZsQ4SRiW03Zp8NIfc7Weuim9DZm6OZkL7pl37jqn3LAcwhZehT_GYnW4TeI6OoyyTupOle5r1rPnNOJqCoTkVkRuReRWxB1yN055hlbj669xN9lhoUWR2Sqp_WO1WXeQ8u7GjXh-k-cAnT4kD9qVCz1yiHtERmXzmHzz0EYt2uiANlo31KKN-mijgDZ6HW20RdsT8uPj-PT4c9D26AgMdpwKkHYPVkLEYREyHYrMVEqGJuQ6ZboqGTxnIWMtTZIYFhc8jIzJVKVEZLhJS5E8JXvNvCmfEZpkVQrLaSxwqJgspI6U5lLoVAimuKiekzfdG8gXrhRL_teXvn-bi1-Q-wPcDsjeerkpX5J7ZruuV8tXVm1_AJHohtA |
| linkProvider | ISSN International Centre |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Fleet+Management+in+Noisy+Environments+via+Model-Predictive+Control&rft.jtitle=Proceedings+of+the+International+Conference+on+Automated+Planning+and+Scheduling&rft.au=B%C3%B8gh%2C+Simon&rft.au=Gj%C3%B8l+Jensen%2C+Peter&rft.au=Kristjansen%2C+Martin&rft.au=Guldstrand+Larsen%2C+Kim&rft.date=2022-06-13&rft.issn=2334-0835&rft.eissn=2334-0843&rft.volume=32&rft.spage=565&rft.epage=573&rft_id=info:doi/10.1609%2Ficaps.v32i1.19843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_icaps_v32i1_19843 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-0835&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-0835&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-0835&client=summon |