Distributed Fleet Management in Noisy Environments via Model-Predictive Control

We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SW...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the International Conference on Automated Planning and Scheduling Vol. 32; pp. 565 - 573
Main Authors: Bøgh, Simon, Gjøl Jensen, Peter, Kristjansen, Martin, Guldstrand Larsen, Kim, Nyman, Ulrik
Format: Journal Article
Language:English
Published: 13.06.2022
ISSN:2334-0835, 2334-0843
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SWGs in the form of a Euclidean Markov Decision Process (EMDP) in the tool Uppaal Stratego, which employs Q-Learning to synthesize near-optimal plans. Furthermore, we deploy the tool in an online and distributed fashion to facilitate scalable, rapid replanning. While executing their current plan, each AMR generates a new plan incorporating updated information about the other AMRs positions and plans. We propose a two-layer Model Predictive Controller-structure (waypoint and station planning), each individually solved by the Q-learning-based solver. We demonstrate our approach using ARGoS3 large-scale robot simulation, where we simulate the AMR movement and observe an up to 27.5% improvement in makespan over a greedy approach to planning. To do so, we have implemented the full software stack, translating observations into SWGs and solving those with our proposed method. In addition, we construct a benchmark platform for comparing planning techniques on a reasonably realistic physical simulation and provide this under the MIT open-source license.
AbstractList We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we propose Stochastic Work Graphs (SWG) as a formalism for capturing the semantics of such distributed and uncertain planning problems. We encode SWGs in the form of a Euclidean Markov Decision Process (EMDP) in the tool Uppaal Stratego, which employs Q-Learning to synthesize near-optimal plans. Furthermore, we deploy the tool in an online and distributed fashion to facilitate scalable, rapid replanning. While executing their current plan, each AMR generates a new plan incorporating updated information about the other AMRs positions and plans. We propose a two-layer Model Predictive Controller-structure (waypoint and station planning), each individually solved by the Q-learning-based solver. We demonstrate our approach using ARGoS3 large-scale robot simulation, where we simulate the AMR movement and observe an up to 27.5% improvement in makespan over a greedy approach to planning. To do so, we have implemented the full software stack, translating observations into SWGs and solving those with our proposed method. In addition, we construct a benchmark platform for comparing planning techniques on a reasonably realistic physical simulation and provide this under the MIT open-source license.
Author Nyman, Ulrik
Gjøl Jensen, Peter
Guldstrand Larsen, Kim
Bøgh, Simon
Kristjansen, Martin
Author_xml – sequence: 1
  givenname: Simon
  surname: Bøgh
  fullname: Bøgh, Simon
– sequence: 2
  givenname: Peter
  surname: Gjøl Jensen
  fullname: Gjøl Jensen, Peter
– sequence: 3
  givenname: Martin
  surname: Kristjansen
  fullname: Kristjansen, Martin
– sequence: 4
  givenname: Kim
  surname: Guldstrand Larsen
  fullname: Guldstrand Larsen, Kim
– sequence: 5
  givenname: Ulrik
  surname: Nyman
  fullname: Nyman, Ulrik
BookMark eNo9kMtOwzAURC1UJErpB7DzDyTY8SPJEpUWkFrKAtaWc3ODLKV2ZYdI_XvagFjN0SxGo3NLZj54JOSes5xrVj84sMeUj6JwPOd1JcUVmRdCyIydefbPQt2QZUquYVKWStdKzMn-yaUhuuZ7wJZuesSB7qy3X3hAP1Dn6Vtw6UTXfnQx-EuZ6Ogs3YUW--w9YutgcCPSVfBDDP0due5sn3D5lwvyuVl_rF6y7f75dfW4zYArJTINULBS6IK1TDZM19DZigFTTSmbDuX5YVsVTQVCgCxaxThAbTurOSgoUYsF4b-7EENKETtzjO5g48lwZi5SzCTFTFLMJEX8AKdbWYw
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1609/icaps.v32i1.19843
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2334-0843
EndPage 573
ExternalDocumentID 10_1609_icaps_v32i1_19843
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
M~E
ID FETCH-LOGICAL-c1553-6cc2073620d04b069cfa80c05b74bfe4044d82b8c33c42d501cc9afa61c5c7e63
ISSN 2334-0835
IngestDate Sat Nov 29 06:38:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1553-6cc2073620d04b069cfa80c05b74bfe4044d82b8c33c42d501cc9afa61c5c7e63
OpenAccessLink https://ojs.aaai.org/index.php/ICAPS/article/download/19843/19602
PageCount 9
ParticipantIDs crossref_primary_10_1609_icaps_v32i1_19843
PublicationCentury 2000
PublicationDate 2022-06-13
PublicationDateYYYYMMDD 2022-06-13
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-13
  day: 13
PublicationDecade 2020
PublicationTitle Proceedings of the International Conference on Automated Planning and Scheduling
PublicationYear 2022
SSID ssib044756953
Score 1.9158701
Snippet We consider dynamic route planning for a fleet of Autonomous Mobile Robots (AMRs) doing fetch and carry tasks on a shared factory floor. In this paper, we...
SourceID crossref
SourceType Index Database
StartPage 565
Title Distributed Fleet Management in Noisy Environments via Model-Predictive Control
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: Directory of Open Access Scholarly Resources (ROAD)
  customDbUrl:
  eissn: 2334-0843
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib044756953
  issn: 2334-0835
  databaseCode: M~E
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWwoELogLEWz70BEpJYsdxjqUsrQQsK1Gk3qLEdlCqbXa1L5ULf5Q_w4ydh7cVEj1wiVZ5TB7zrWc883mGkINElUWlM5jkCGYCzmIdZFVpAhNhSVyelEy6ZhPpZCLPz7PpaPS7WwuznaVNI6-ussV_VTXsA2Xj0tlbqLsXCjvgNygdtqB22P6T4j9gKVzsYgWuJGjFrD2KC0Y3JvN69fPt2F_gtq0L2xRtFkyXmLixdKJjR2L3vddpb-1WHbdgN6I4rB_EJMTRZj0Hhxieo2uN5IiigBONBPgffSwA0_XvpUv3fKsvB2rAyYU7NEMaThss2qEU20HqouiOuaoI_dWbmcZQDtz0M0zg3Smf6ks_1AGzZOwRxIYRMWaMYzltlwY3_j5X66kb0tuQqRuTE5F45j1xnVNuWA5hC6_CH2OxOtyyuI4Oo6yTulOl-5r17DmNOJsCIbkVkVsRuRVxh9wF2GdoNb78GneDHRZaFJmtktq_Vpt1BynvbjyI5zd5DtDZQ_KgnbnQI4e4fTIyzSPy1UMbtWijA9po3VCLNuqjjQLa6HW00RZtj8n3j-Oz49Og7dERKOw4FSDtHqyEiEMd8jIUmaoKGaowKVNeVobDe2oZl1IxpniskzBSKiuqQkQqUakR7AnZa-aNeUooOPJaK7hKCM0TWZUp9qhPo4qXomCFfEbedF8gX7hSLPlfP_rz25z8gtwf4PaS7K2XG_OK3FPbdb1avrZq-wN3G4c8
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Fleet+Management+in+Noisy+Environments+via+Model-Predictive+Control&rft.jtitle=Proceedings+of+the+International+Conference+on+Automated+Planning+and+Scheduling&rft.au=B%C3%B8gh%2C+Simon&rft.au=Gj%C3%B8l+Jensen%2C+Peter&rft.au=Kristjansen%2C+Martin&rft.au=Guldstrand+Larsen%2C+Kim&rft.date=2022-06-13&rft.issn=2334-0835&rft.eissn=2334-0843&rft.volume=32&rft.spage=565&rft.epage=573&rft_id=info:doi/10.1609%2Ficaps.v32i1.19843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1609_icaps_v32i1_19843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2334-0835&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2334-0835&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2334-0835&client=summon