Different Numerical Inversion Algorithms of the Laplace Transform for the Solution of the Advection-Diffusion Equation with Non-local Closure in Air Pollution Modeling

In this paper, a three-dimensional solution of the steady-state advection-diffusion equation is obtained applying the Generalized Integral Advection Diffusion Multilayer Technique (GIADMT), considering non-local closure for turbulent flow. Two different parameterizations were considering for the cou...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Trends in Computational and Applied Mathematics Ročník 19; číslo 1
Hlavní autoři: Camila Pinto da Costa, Karine Rui, Léslie Darien Pérez-Fernández
Médium: Journal Article
Jazyk:angličtina
Vydáno: Sociedade Brasileira de Matemática Aplicada e Computacional 05.05.2018
Témata:
ISSN:2676-0029
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, a three-dimensional solution of the steady-state advection-diffusion equation is obtained applying the Generalized Integral Advection Diffusion Multilayer Technique (GIADMT), considering non-local closure for turbulent flow. Two different parameterizations were considering for the countergradient term and different methods of numerical inversion for inverse Laplace transform. The results were compared with the experimental data of Copenhagen experiment by an evaluation of statistical indices to analyse the solution of the equation through the methods of numerical inversion. Differents parameterizations for the vertical turbulent eddy diffusivity and wind profile were utilized. The results show a good agreement with the experiment and the methods of numerical inversion for inverse Laplace transform show same efficacy.    
ISSN:2676-0029
DOI:10.5540/tema.2018.019.01.43