Different Numerical Inversion Algorithms of the Laplace Transform for the Solution of the Advection-Diffusion Equation with Non-local Closure in Air Pollution Modeling

In this paper, a three-dimensional solution of the steady-state advection-diffusion equation is obtained applying the Generalized Integral Advection Diffusion Multilayer Technique (GIADMT), considering non-local closure for turbulent flow. Two different parameterizations were considering for the cou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in Computational and Applied Mathematics Jg. 19; H. 1
Hauptverfasser: Camila Pinto da Costa, Karine Rui, Léslie Darien Pérez-Fernández
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Sociedade Brasileira de Matemática Aplicada e Computacional 05.05.2018
Schlagworte:
ISSN:2676-0029
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a three-dimensional solution of the steady-state advection-diffusion equation is obtained applying the Generalized Integral Advection Diffusion Multilayer Technique (GIADMT), considering non-local closure for turbulent flow. Two different parameterizations were considering for the countergradient term and different methods of numerical inversion for inverse Laplace transform. The results were compared with the experimental data of Copenhagen experiment by an evaluation of statistical indices to analyse the solution of the equation through the methods of numerical inversion. Differents parameterizations for the vertical turbulent eddy diffusivity and wind profile were utilized. The results show a good agreement with the experiment and the methods of numerical inversion for inverse Laplace transform show same efficacy.    
ISSN:2676-0029
DOI:10.5540/tema.2018.019.01.43