Safe testing

We develop the theory of hypothesis testing based on the e-value, a notion of evidence that, unlike the p-value, allows for effortlessly combining results from several studies in the common scenario where the decision to perform a new study may depend on previous outcomes. Tests based on e-values ar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of the Royal Statistical Society. Series B, Statistical methodology Ročník 86; číslo 5; s. 1091 - 1128
Hlavní autoři: Grünwald, Peter, de Heide, Rianne, Koolen, Wouter
Médium: Journal Article
Jazyk:angličtina
Vydáno: 13.11.2024
ISSN:1369-7412, 1467-9868
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We develop the theory of hypothesis testing based on the e-value, a notion of evidence that, unlike the p-value, allows for effortlessly combining results from several studies in the common scenario where the decision to perform a new study may depend on previous outcomes. Tests based on e-values are safe, i.e. they preserve type-I error guarantees, under such optional continuation. We define growth rate optimality (GRO) as an analogue of power in an optional continuation context, and we show how to construct GRO e-variables for general testing problems with composite null and alternative, emphasizing models with nuisance parameters. GRO e-values take the form of Bayes factors with special priors. We illustrate the theory using several classic examples including a 1-sample safe t-test and the 2×2 contingency table. Sharing Fisherian, Neymanian, and Jeffreys–Bayesian interpretations, e-values may provide a methodology acceptable to adherents of all three schools.
ISSN:1369-7412
1467-9868
DOI:10.1093/jrsssb/qkae011