New Reducible Configurations for Graph Multicoloring with Application to the Experimental Resolution of McDiarmid-Reed's Conjecture

A $(a,b)$-coloring of a graph $G$ associates to each vertex a $b$-subset of a set of $a$ colors in such a way that the color-sets of adjacent vertices are disjoint. We define general handle reduction methods for $(a,b)$-coloring of graphs for $2\le a/b\le 3$. In particular, using necessary and suffi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of graph algorithms and applications Ročník 29; číslo 1; s. 267 - 288
Hlavní autori: Godin, Jean-Christophe, Togni, Olivier
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 01.10.2025
ISSN:1526-1719, 1526-1719
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:A $(a,b)$-coloring of a graph $G$ associates to each vertex a $b$-subset of a set of $a$ colors in such a way that the color-sets of adjacent vertices are disjoint. We define general handle reduction methods for $(a,b)$-coloring of graphs for $2\le a/b\le 3$. In particular, using necessary and sufficient conditions for the existence of an $(a,b)$-coloring of a path with prescribed color-sets on its end-vertices, more complex $(a,b)$-colorability reduction handles are presented. The utility of these tools is exemplified on finite triangle-free induced subgraphs of the triangular lattice for which McDiarmid-Reed's conjecture asserts that they are all $(9,4)$-colorable. Computations on millions of such graphs generated randomly show that our tools allow to find a $(9,4)$-coloring for each of them except for one specific regular shape of graphs (that can be $(9,4)$-colored by an easy ad-hoc process). We thus obtain computational evidence towards the conjecture of McDiarmid&Reed.
ISSN:1526-1719
1526-1719
DOI:10.7155/jgaa.v29i1.3096