DECISION MAKING IN DYNAMIC ENVIRONMENTS AN APPLICATION OF MACHINE LEARNING TO THE ANALYTICAL HIERARCHY PROCESS

The purpose of this work is to propose a method of algorithmic decision making that builds on the Analytical Hierarchy Process by applying reinforcement learning. Decision making in dynamic environments requires adaptability as new information becomes available. The Analytical Hierarchy Process (AHP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of the analytic hierarchy process Jg. 13; H. 1
Hauptverfasser: Jassemi-Zargani, Rahim, Kamps, Caelum
Format: Journal Article
Sprache:Englisch
Veröffentlicht: 19.05.2021
ISSN:1936-6744, 1936-6744
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The purpose of this work is to propose a method of algorithmic decision making that builds on the Analytical Hierarchy Process by applying reinforcement learning. Decision making in dynamic environments requires adaptability as new information becomes available. The Analytical Hierarchy Process (AHP) provides a method for comparative decision making but is insufficient to handle information that becomes available over time. Using the opinions of one or many subject matter experts and the AHP, the relative importance of evidence can be quantified. However, the ability to explicitly measure the interdependencies is more challenging. The interdependency between the different evidence can be exploited to improve the model accuracy, particularly when information is missing or uncertain. To establish this ability within a decision-making tool, the AHP method can be optimized through a stochastic gradient descent algorithm. To illustrate the effectiveness of the proposed method, an experiment was conducted on air target threat classification in time series developing scenarios.
AbstractList The purpose of this work is to propose a method of algorithmic decision making that builds on the Analytical Hierarchy Process by applying reinforcement learning. Decision making in dynamic environments requires adaptability as new information becomes available. The Analytical Hierarchy Process (AHP) provides a method for comparative decision making but is insufficient to handle information that becomes available over time. Using the opinions of one or many subject matter experts and the AHP, the relative importance of evidence can be quantified. However, the ability to explicitly measure the interdependencies is more challenging. The interdependency between the different evidence can be exploited to improve the model accuracy, particularly when information is missing or uncertain. To establish this ability within a decision-making tool, the AHP method can be optimized through a stochastic gradient descent algorithm. To illustrate the effectiveness of the proposed method, an experiment was conducted on air target threat classification in time series developing scenarios.
Author Jassemi-Zargani, Rahim
Kamps, Caelum
Author_xml – sequence: 1
  givenname: Rahim
  surname: Jassemi-Zargani
  fullname: Jassemi-Zargani, Rahim
– sequence: 2
  givenname: Caelum
  surname: Kamps
  fullname: Kamps, Caelum
BookMark eNpNkNFqgzAUhsPoYF3X-13mBdqdNJrMy5CmNUxjUTfolWg0rGWzRWGwt5-6Xezq_HC-_3D47tGsvbQNQo8E1oQCpU-nc_l-XX8ReiJrztgNmpOAshXjnjf7l-_Qsu_PAECAemTD56jdKqkznRgcixdt9lgbvD0aEWuJlXnTaWJiZfIMC4PF4RBpKfKRTnZDQYbaKBwpkZqxmic4D9VAiuiYD2CEQ61SkcrwiA9pIlWWPaBbV370zfJvLtDrTuUyXEXJfmysLPGHX2nNXGVZ4Mrar4glm2dKnbOcU4CAVz5x1rGS-67hXlWzytbgWyirTTDsmgboAsHvXdtd-r5rXHHtTp9l910QKCZlxaSsmJQVgzL6AxGnWhU
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.13033/ijahp.v13i1.766
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1936-6744
ExternalDocumentID 10_13033_ijahp_v13i1_766
GroupedDBID 5VS
AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
ID FETCH-LOGICAL-c1536-3d6fbc69fad5b1c12833ffc7730097b51fcf6a75fe74bd6bcd05c0ab29b51ee03
ISSN 1936-6744
IngestDate Sat Nov 29 04:15:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1536-3d6fbc69fad5b1c12833ffc7730097b51fcf6a75fe74bd6bcd05c0ab29b51ee03
OpenAccessLink https://ijahp.org/index.php/IJAHP/article/download/766/744
ParticipantIDs crossref_primary_10_13033_ijahp_v13i1_766
PublicationCentury 2000
PublicationDate 2021-05-19
PublicationDateYYYYMMDD 2021-05-19
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-19
  day: 19
PublicationDecade 2020
PublicationTitle International journal of the analytic hierarchy process
PublicationYear 2021
SSID ssj0001034127
Score 2.1515658
Snippet The purpose of this work is to propose a method of algorithmic decision making that builds on the Analytical Hierarchy Process by applying reinforcement...
SourceID crossref
SourceType Index Database
Title DECISION MAKING IN DYNAMIC ENVIRONMENTS AN APPLICATION OF MACHINE LEARNING TO THE ANALYTICAL HIERARCHY PROCESS
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1936-6744
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001034127
  issn: 1936-6744
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb5tAEF65aVX1UvWp9Kk99FIhXGCBNUdEiIyaLJZLq7gXa2F3FaKYWnlY6Z_ob-4OLyM3lZpDLwitzQjtfJoZZma_QeiDA7RirnBNwbkwXc4npsaNMG1IOLieCJRohk1QxiYnJ8FsNPrVnYXZnNOqmtzcBOv_qmq9ppUNR2fvoO5eqF7Q91rp-qrVrq__pPiDOErAQhrH4WdIRSXMOFiwELY7Zt-SecqAv_-LETIjnM26k8TQ_XMcRtOExcZRHM4ZPJqldUdQyMKjRVYTJ0yTeA71pYVWXRp1yjvbtsNvs4sDTgoIbjmwnwA7LAzfhi3_aaybQwp9E4-O4-WqNL_zbtKUMeen5ar3CXzVVC0iLs9bBok2X-HYUGpvrWJjYgPimz5tWB_H8pa1zi6TXfz9Ye61_wXeifKMn67HG5uU9pj6tzBr73i8vg-xKecRsqwlLGsJSy3hHrrvUI9ag0_0OmdnaZ9fTwHuX7itfIOQTzuvMYh0BiFL9gQ9br81cNhg5CkayeoZetgddXiOqg4quIEKThhuoYKHUMEhwwOo4PQQt1DBHVRwlmINFbyFCu6hgluovEBfD-Msmprt_A2z0H7QN4nwVV74geLCy-1CRzKEKFVQGHEQ0NyzVaF8Tj0lqZsLPy-E5RUWz51A_yalRV6ivepHJfcRVraf10RKE8pdWaicCstVHESTXFLnFfrY7dVy3dCsLP-mnNd3-O8b9GiLwbdo7-riWr5DD4rNVXl58b7W7m8dVGgI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DECISION+MAKING+IN+DYNAMIC+ENVIRONMENTS+AN+APPLICATION+OF+MACHINE+LEARNING+TO+THE+ANALYTICAL+HIERARCHY+PROCESS&rft.jtitle=International+journal+of+the+analytic+hierarchy+process&rft.au=Jassemi-Zargani%2C+Rahim&rft.au=Kamps%2C+Caelum&rft.date=2021-05-19&rft.issn=1936-6744&rft.eissn=1936-6744&rft.volume=13&rft.issue=1&rft_id=info:doi/10.13033%2Fijahp.v13i1.766&rft.externalDBID=n%2Fa&rft.externalDocID=10_13033_ijahp_v13i1_766
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6744&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6744&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6744&client=summon