Linear equations for unordered data vectors in $[D]^k\to{}Z^d
Following a recently considered generalisation of linear equations to unordered-data vectors and to ordered-data vectors, we perform a further generalisation to data vectors that are functions from k-element subsets of the unordered-data set to vectors of integer numbers. These generalised equations...
Uloženo v:
| Vydáno v: | Logical methods in computer science Ročník 18, Issue 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Logical Methods in Computer Science e.V
12.12.2022
|
| Témata: | |
| ISSN: | 1860-5974, 1860-5974 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Following a recently considered generalisation of linear equations to
unordered-data vectors and to ordered-data vectors, we perform a further
generalisation to data vectors that are functions from k-element subsets of the
unordered-data set to vectors of integer numbers. These generalised equations
naturally appear in the analysis of vector addition systems (or Petri nets)
extended so that each token carries a set of unordered data. We show that
nonnegative-integer solvability of linear equations is in nondeterministic
exponential time while integer solvability is in polynomial time. |
|---|---|
| ISSN: | 1860-5974 1860-5974 |
| DOI: | 10.46298/lmcs-18(4:11)2022 |