The Complexity of Iterated Reversible Computation

We study a class of functional problems reducible to computing $f^{(n)}(x)$ for inputs $n$ and $x$, where $f$ is a polynomial-time bijection. As we prove, the definition is robust against variations in the type of reduction used in its definition, and in whether we require $f$ to have a polynomial-t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:TheoretiCS Ročník 2
Hlavní autor: Eppstein, David
Médium: Journal Article
Jazyk:angličtina
Vydáno: TheoretiCS Foundation e.V 26.12.2023
Témata:
ISSN:2751-4838, 2751-4838
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study a class of functional problems reducible to computing $f^{(n)}(x)$ for inputs $n$ and $x$, where $f$ is a polynomial-time bijection. As we prove, the definition is robust against variations in the type of reduction used in its definition, and in whether we require $f$ to have a polynomial-time inverse or to be computible by a reversible logic circuit. These problems are characterized by the complexity class $\mathsf{FP}^{\mathsf{PSPACE}}$, and include natural $\mathsf{FP}^{\mathsf{PSPACE}}$-complete problems in circuit complexity, cellular automata, graph algorithms, and the dynamical systems described by piecewise-linear transformations.
ISSN:2751-4838
2751-4838
DOI:10.46298/theoretics.23.10