Dissection of the structure-function relationship of Na v channels

Voltage-gated sodium channels (Na ) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Na channels, we have performed systematic structural analysis using human Na 1.7...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS Vol. 121; no. 9; p. e2322899121
Main Authors: Li, Zhangqiang, Wu, Qiurong, Huang, Gaoxingyu, Jin, Xueqin, Li, Jiaao, Pan, Xiaojing, Yan, Nieng
Format: Journal Article
Language:English
Published: United States 27.02.2024
Subjects:
ISSN:1091-6490
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Voltage-gated sodium channels (Na ) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Na channels, we have performed systematic structural analysis using human Na 1.7 as a prototype. Guided by the structural differences between wild-type (WT) Na 1.7 and an eleven mutation-containing variant, designated Na 1.7-M11, we generated three additional intermediate mutants and solved their structures at overall resolutions of 2.9-3.4 Å. The mutant with nine-point mutations in the pore domain (PD), named Na 1.7-M9, has a reduced cavity volume and a sealed gate, with all voltage-sensing domains (VSDs) remaining up. Structural comparison of WT and Na 1.7-M9 pinpoints two residues that may be critical to the tightening of the PD. However, the variant containing these two mutations, Na 1.7-M2, or even in combination with two additional mutations in the VSDs, named Na 1.7-M4, failed to tighten the PD. Our structural analysis reveals a tendency of PD contraction correlated with the right shift of the static inactivation I-V curves. We predict that the channel in the resting state should have a "tight" PD with down VSDs.
AbstractList Voltage-gated sodium channels (Na ) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical coupling. To delineate the structure-function relationship of human Na channels, we have performed systematic structural analysis using human Na 1.7 as a prototype. Guided by the structural differences between wild-type (WT) Na 1.7 and an eleven mutation-containing variant, designated Na 1.7-M11, we generated three additional intermediate mutants and solved their structures at overall resolutions of 2.9-3.4 Å. The mutant with nine-point mutations in the pore domain (PD), named Na 1.7-M9, has a reduced cavity volume and a sealed gate, with all voltage-sensing domains (VSDs) remaining up. Structural comparison of WT and Na 1.7-M9 pinpoints two residues that may be critical to the tightening of the PD. However, the variant containing these two mutations, Na 1.7-M2, or even in combination with two additional mutations in the VSDs, named Na 1.7-M4, failed to tighten the PD. Our structural analysis reveals a tendency of PD contraction correlated with the right shift of the static inactivation I-V curves. We predict that the channel in the resting state should have a "tight" PD with down VSDs.
Author Huang, Gaoxingyu
Li, Jiaao
Pan, Xiaojing
Li, Zhangqiang
Yan, Nieng
Jin, Xueqin
Wu, Qiurong
Author_xml – sequence: 1
  givenname: Zhangqiang
  orcidid: 0000-0002-3296-2293
  surname: Li
  fullname: Li, Zhangqiang
  organization: Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Qiurong
  surname: Wu
  fullname: Wu, Qiurong
  organization: Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Gaoxingyu
  surname: Huang
  fullname: Huang, Gaoxingyu
  organization: Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
– sequence: 4
  givenname: Xueqin
  surname: Jin
  fullname: Jin, Xueqin
  organization: Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Jiaao
  surname: Li
  fullname: Li, Jiaao
  organization: Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
– sequence: 6
  givenname: Xiaojing
  surname: Pan
  fullname: Pan, Xiaojing
  organization: Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen 518107, China
– sequence: 7
  givenname: Nieng
  orcidid: 0000-0003-4829-7416
  surname: Yan
  fullname: Yan, Nieng
  organization: Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen 518107, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38381792$$D View this record in MEDLINE/PubMed
BookMark eNo1j8tOwzAURC0Eog9Ys0P5gZR77SS2l1BelaqygXXlx7USlDpRnCDx91AVVjPSHI1mFuw8dpEYu0FYIUhx10eTVlxwrrRGjmdsjqAxrwoNM7ZI6RMAdKngks2EEgql5nP28NikRG5suph1IRtrytI4TG6cBsrDFE_JQK05mlQ3_RHbmewrc7WJkdp0xS6CaRNd_-mSfTw_va9f8-3by2Z9v80dloA5B01E0laFCb9DvPG6RIVeOx6k8WCLwAuLyqrCS2cr4ZUVVQiBlJbeAV-y21NvP9kD-X0_NAczfO__z_AftytNLA
CitedBy_id crossref_primary_10_3390_biochem5020018
crossref_primary_10_7554_eLife_104901
crossref_primary_10_1016_j_jconrel_2025_114049
crossref_primary_10_1038_s41580_024_00763_7
crossref_primary_10_7554_eLife_104901_3
crossref_primary_10_1360_SSC_2025_0046
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1073/pnas.2322899121
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
ExternalDocumentID 38381792
Genre Journal Article
GrantInformation_xml – fundername: MOST | National Natural Science Foundation of China (NSFC)
  grantid: 32330052
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CGR
CS3
CUY
CVF
D0L
DIK
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
ID FETCH-LOGICAL-c1501-209eee7b64af009dad95181d9c2f7ad0b4f24b18b84d7cb63d8b36fffe897dc02
IngestDate Mon Nov 10 01:26:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords structure–function relationship
electromechanical coupling
voltage-gated sodium channel
closed-state inactivation
cryo-EM
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1501-209eee7b64af009dad95181d9c2f7ad0b4f24b18b84d7cb63d8b36fffe897dc02
ORCID 0000-0002-3296-2293
0000-0003-4829-7416
OpenAccessLink https://pmc.ncbi.nlm.nih.gov/articles/PMC10907234/pdf/pnas.202322899.pdf
PMID 38381792
ParticipantIDs pubmed_primary_38381792
PublicationCentury 2000
PublicationDate 2024-Feb-27
PublicationDateYYYYMMDD 2024-02-27
PublicationDate_xml – month: 02
  year: 2024
  text: 2024-Feb-27
  day: 27
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2024
SSID ssj0009580
Score 2.44635
Snippet Voltage-gated sodium channels (Na ) undergo conformational shifts in response to membrane potential changes, a mechanism known as the electromechanical...
SourceID pubmed
SourceType Index Database
StartPage e2322899121
SubjectTerms Humans
Membrane Potentials
Mutation
Structure-Activity Relationship
Voltage-Gated Sodium Channels - genetics
Title Dissection of the structure-function relationship of Na v channels
URI https://www.ncbi.nlm.nih.gov/pubmed/38381792
Volume 121
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWcpihyKZqu6RLw0EMLQ60kEyJ5TJckh0BwgbTwLeAaBGhlx44M92f6rR1uUuC0SHLIRTZImrL0RsOZEecNQm8tFxWjSoNbMqIZ0cRmkhOdMQkfShdU-VyYH0e0rtlkwseDwZ-UC7P8SZuGrVZ8dqdQQxuA7VJnbwF3Nyk0wHcAHY4AOxxvBPwX94ZdJUPQ2ZWBI7adm8ytYr5nnvbAub1aLmgghkufBNwEeuXOYB13C9wiTVen-OFen40SVcRimA3HdV_b-MjvFfBB6XOQw9NuCWhd-7ezdj7tGw_bGLs-ENMVnPB3223vCUQHk9acR6LwGKcoic_7DmupCboVTJOsIqE6aKd8Q350lDJ-SZUasPWcNxhHXFH1oJtcfeJGLD78eyTAMvvlQQYvnIHiKa_vXePeTl0baINWrjBI7WJBHaUzyxNZFB19XPsnW-hB-vWax-Itl-NH6GF0OfBeEJVtNDDNY7SdEMPvIvP4-yfoUy87eGoxgI2vyg6-LDtuWC3wEifZeYq-7389_nyYxSIbmQJfoIBHhxtjqKyIsHBNWmiwucGJ4aq0VOhcElsSWTDJiKZKViPN5Kiy1hrGqVZ5-Qzda6aNeYFwwS01AD1YjTkRcPF5YWxlZG5FKSxjO-h5uA8ns8CkcpLu0Mv_9rxCW70wvUabFp5S8wbdV8uLs8V81yPyF2eMYWE
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dissection+of+the+structure-function+relationship+of+Na+v+channels&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Li%2C+Zhangqiang&rft.au=Wu%2C+Qiurong&rft.au=Huang%2C+Gaoxingyu&rft.au=Jin%2C+Xueqin&rft.date=2024-02-27&rft.eissn=1091-6490&rft.volume=121&rft.issue=9&rft.spage=e2322899121&rft_id=info:doi/10.1073%2Fpnas.2322899121&rft_id=info%3Apmid%2F38381792&rft_id=info%3Apmid%2F38381792&rft.externalDocID=38381792