SOME REMARKS ON ROUGH STATISTICAL \(\Lambda\)-CONVERGENCE OF ORDER \(\alpha\)

The main purpose of this work is to define Rough Statistical \(\Lambda\)-Convergence of order \(\alpha\) \((0<\alpha\leq1)\) in normed linear spaces. We have proved some basic properties and also provided some examples to show that this method of convergence is more generalized than the rough sta...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ural mathematical journal Ročník 7; číslo 1; s. 16
Hlavní autoři: Antal, Reena, Chawla, Meenakshi, Kumar, Vijay
Médium: Journal Article
Jazyk:angličtina
Vydáno: Ural Branch of the Russian Academy of Sciences and Ural Federal University named after the first President of Russia B.N.Yeltsin, Krasovskii Institute of Mathematics and Mechanics 30.07.2021
Témata:
ISSN:2414-3952, 2414-3952
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The main purpose of this work is to define Rough Statistical \(\Lambda\)-Convergence of order \(\alpha\) \((0<\alpha\leq1)\) in normed linear spaces. We have proved some basic properties and also provided some examples to show that this method of convergence is more generalized than the rough statistical convergence. Further, we have shown the results related to statistically \(\Lambda\)-bounded sets of order \(\alpha\) and sets of rough statistically \(\Lambda\)-convergent sequences of order \(\alpha\).
ISSN:2414-3952
2414-3952
DOI:10.15826/umj.2021.1.002