Spline approximate solution for doubly periodic Riemann boundary value problem

A straightforward method for the approximate solution of doubly periodic Riemann boundary value problems for analytic functions is proposed through the approximation by the δ-cardinal splines of the first degree and the cubic δ-cardinal splines. First, we approximate the solution of the doubly perio...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex variables and elliptic equations Ročník 51; číslo 8-11; s. 1047 - 1058
Hlavní autor: Li, Xing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 01.08.2006
Témata:
ISSN:1747-6933, 1747-6941
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A straightforward method for the approximate solution of doubly periodic Riemann boundary value problems for analytic functions is proposed through the approximation by the δ-cardinal splines of the first degree and the cubic δ-cardinal splines. First, we approximate the solution of the doubly periodic Riemann jump problem based on approximation of the singular integral operator with Weierstrass ζ-function kernel. Furthermore we obtain the approximate solution of the general non-homogenous doubly periodic Riemann problem. We prove that the approximate solution is sufficiently close to the exact solution in any degree when the partition Δ is sufficiently fine. †Dedicated to Professor Guochun Wen on his 75th anniversary.
ISSN:1747-6933
1747-6941
DOI:10.1080/17476930600740887