Longest Gapped Repeats and Palindromes

A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete mathematics and theoretical computer science Jg. 19 no. 4, FCT '15; H. special issue FCT'15
Hauptverfasser: Dumitran, Marius, Gawrychowski, Paweł, Manea, Florin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Discrete Mathematics & Theoretical Computer Science 13.10.2017
Schlagworte:
ISSN:1365-8050, 1365-8050
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ of the word $w$, the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position $i$ we compute the longest prefix $u$ of $w[i..n]$ such that $uv$ (respectively, $u^Rv$) is a suffix of $w[1..i-1]$ (defining thus a gapped repeat $uvu$ -- respectively, palindrome $u^Rvu$), and the length of $v$ is subject to the aforementioned restrictions. Comment: This is an extension of the conference papers "Longest $\alpha$-Gapped Repeat and Palindrome", presented by the second and third authors at FCT 2015, and "Longest Gapped Repeats and Palindromes", presented by the first and third authors at MFCS 2015
AbstractList A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ of the word $w$, the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position $i$ we compute the longest prefix $u$ of $w[i..n]$ such that $uv$ (respectively, $u^Rv$) is a suffix of $w[1..i-1]$ (defining thus a gapped repeat $uvu$ -- respectively, palindrome $u^Rvu$), and the length of $v$ is subject to the aforementioned restrictions. Comment: This is an extension of the conference papers "Longest $\alpha$-Gapped Repeat and Palindrome", presented by the second and third authors at FCT 2015, and "Longest Gapped Repeats and Palindromes", presented by the first and third authors at MFCS 2015
A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ of the word $w$, the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position $i$ we compute the longest prefix $u$ of $w[i..n]$ such that $uv$ (respectively, $u^Rv$) is a suffix of $w[1..i-1]$ (defining thus a gapped repeat $uvu$ -- respectively, palindrome $u^Rvu$), and the length of $v$ is subject to the aforementioned restrictions.
Author Dumitran, Marius
Gawrychowski, Paweł
Manea, Florin
Author_xml – sequence: 1
  givenname: Marius
  surname: Dumitran
  fullname: Dumitran, Marius
– sequence: 2
  givenname: Paweł
  surname: Gawrychowski
  fullname: Gawrychowski, Paweł
– sequence: 3
  givenname: Florin
  surname: Manea
  fullname: Manea, Florin
BookMark eNpNkE1LAzEURYNUsK0u3c_KXfRlkkySpVRtCxVF6zq8yUeZ0k6GpBv_vaUVcXUvF-5ZnAkZ9akPhNwyuK95w_XD0-t69kmZoYKKCzJmvJFUg4TRv35FJqVsAVhthBqTu1XqN6EcqjkOQ_DVRxgCHkqFva_ecdf1Pqd9KNfkMuKuhJvfnJKvl-f1bEFXb_Pl7HFFHRNcUOM8NKiF51JpoR2Dupbc6WhEA4CKBxYRwCgduWwctFy6gFEfLwDBIZ-S5ZnrE27tkLs95m-bsLOnIeWNxXzo3C7YVrnYGlQeHRcajQEMRh41OFfHVsUji55ZLqdScoh_PAb2JMyehFlmrLCC_wDIu16L
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.23638/DMTCS-19-4-4
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1365-8050
ExternalDocumentID oai_doaj_org_article_b7cfb9a7dac348a990ae95638cc2fb7f
10_23638_DMTCS_19_4_4
GroupedDBID -~9
.4S
.DC
29G
2WC
5GY
5VS
8FE
8FG
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACGFO
ACIWK
ACUHS
ADBBV
ADQAK
AENEX
AFFHD
AFKRA
AFPKN
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
B0M
BAIFH
BBTPI
BCNDV
BENPR
BFMQW
BGLVJ
BPHCQ
CCPQU
CITATION
EAP
EBS
ECS
EDO
EJD
EMK
EPL
EST
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IBB
ICD
ITC
J9A
KQ8
KWQ
L6V
M7S
MK~
ML~
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PV9
REM
RNS
RSU
RZL
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c1434-9cd06a84d357848c102253c8f94600a73e1fa00978f356c0b35ceaf8a8400eca3
IEDL.DBID DOA
ISSN 1365-8050
IngestDate Mon Nov 10 04:30:22 EST 2025
Sat Nov 29 08:06:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue special issue FCT'15
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1434-9cd06a84d357848c102253c8f94600a73e1fa00978f356c0b35ceaf8a8400eca3
OpenAccessLink https://doaj.org/article/b7cfb9a7dac348a990ae95638cc2fb7f
ParticipantIDs doaj_primary_oai_doaj_org_article_b7cfb9a7dac348a990ae95638cc2fb7f
crossref_primary_10_23638_DMTCS_19_4_4
PublicationCentury 2000
PublicationDate 2017-10-13
PublicationDateYYYYMMDD 2017-10-13
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-13
  day: 13
PublicationDecade 2010
PublicationTitle Discrete mathematics and theoretical computer science
PublicationYear 2017
Publisher Discrete Mathematics & Theoretical Computer Science
Publisher_xml – name: Discrete Mathematics & Theoretical Computer Science
SSID ssj0012947
Score 2.0472898
Snippet A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is...
SourceID doaj
crossref
SourceType Open Website
Index Database
SubjectTerms computer science - data structures and algorithms
Title Longest Gapped Repeats and Palindromes
URI https://doaj.org/article/b7cfb9a7dac348a990ae95638cc2fb7f
Volume 19 no. 4, FCT '15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BFMQW
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: M7S
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1365-8050
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012947
  issn: 1365-8050
  databaseCode: PIMPY
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYYCBRwFRHlUG1M1qEl9re4RCAamtIlFQmSLnbEssadUUfj92klZlYmG1bMv6Tr77zo_vCLnNwOt4AVKtNFIwLPIHTZZmDNwQ7gJo-UPufcQnEzGbyWSr1Jd_E1bJA1fAdTOONpOKa4UMhHLOUxnH6ZlAjG3Grfe-IZfrZKq-P4gl8EpRM2aub_dhPB280khSoPArAm0J9ZcRZXhMDmsqGNxVSzghOyZvkqN1mYWg3nVNcjDeSKsWp6Qzmuf-Tih4UouF0YFj0M6dFoHKdZA4Ul0JEBRn5G34OB0807rYAUVHWYBK1GFfCdBefgYE-kysx1BYCY6TKM5MZFX568KyXh_DjPXQKCvckDA0qNg5aeTz3FyQIALeR8azWKMEo1E5ChKCinvCchsL1SKdNQDpotK0SF0uUCKVlkilkUwhhRa59_BsOnkp6rLBGSitDZT-ZaDL_5jkiuzHPp76pyTsmjRWyy9zQ_bwe_VZLNul7dtkN3kZJx8_GUi2Kw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longest+Gapped+Repeats+and+Palindromes&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Dumitran%2C+Marius&rft.au=Gawrychowski%2C+Pawe%C5%82&rft.au=Manea%2C+Florin&rft.date=2017-10-13&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=19+no.+4%2C+FCT+%2715&rft.issue=special+issue+FCT%2715&rft_id=info:doi/10.23638%2FDMTCS-19-4-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_23638_DMTCS_19_4_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon