Longest Gapped Repeats and Palindromes
A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ o...
Gespeichert in:
| Veröffentlicht in: | Discrete mathematics and theoretical computer science Jg. 19 no. 4, FCT '15; H. special issue FCT'15 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Discrete Mathematics & Theoretical Computer Science
13.10.2017
|
| Schlagworte: | |
| ISSN: | 1365-8050, 1365-8050 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ of the word $w$, the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position $i$ we compute the longest prefix $u$ of $w[i..n]$ such that $uv$ (respectively, $u^Rv$) is a suffix of $w[1..i-1]$ (defining thus a gapped repeat $uvu$ -- respectively, palindrome $u^Rvu$), and the length of $v$ is subject to the aforementioned restrictions.
Comment: This is an extension of the conference papers "Longest $\alpha$-Gapped Repeat and Palindrome", presented by the second and third authors at FCT 2015, and "Longest Gapped Repeats and Palindromes", presented by the first and third authors at MFCS 2015 |
|---|---|
| AbstractList | A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ of the word $w$, the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position $i$ we compute the longest prefix $u$ of $w[i..n]$ such that $uv$ (respectively, $u^Rv$) is a suffix of $w[1..i-1]$ (defining thus a gapped repeat $uvu$ -- respectively, palindrome $u^Rvu$), and the length of $v$ is subject to the aforementioned restrictions.
Comment: This is an extension of the conference papers "Longest $\alpha$-Gapped Repeat and Palindrome", presented by the second and third authors at FCT 2015, and "Longest Gapped Repeats and Palindromes", presented by the first and third authors at MFCS 2015 A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ of the word $w$, the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position $i$ we compute the longest prefix $u$ of $w[i..n]$ such that $uv$ (respectively, $u^Rv$) is a suffix of $w[1..i-1]$ (defining thus a gapped repeat $uvu$ -- respectively, palindrome $u^Rvu$), and the length of $v$ is subject to the aforementioned restrictions. |
| Author | Dumitran, Marius Gawrychowski, Paweł Manea, Florin |
| Author_xml | – sequence: 1 givenname: Marius surname: Dumitran fullname: Dumitran, Marius – sequence: 2 givenname: Paweł surname: Gawrychowski fullname: Gawrychowski, Paweł – sequence: 3 givenname: Florin surname: Manea fullname: Manea, Florin |
| BookMark | eNpNkE1LAzEURYNUsK0u3c_KXfRlkkySpVRtCxVF6zq8yUeZ0k6GpBv_vaUVcXUvF-5ZnAkZ9akPhNwyuK95w_XD0-t69kmZoYKKCzJmvJFUg4TRv35FJqVsAVhthBqTu1XqN6EcqjkOQ_DVRxgCHkqFva_ecdf1Pqd9KNfkMuKuhJvfnJKvl-f1bEFXb_Pl7HFFHRNcUOM8NKiF51JpoR2Dupbc6WhEA4CKBxYRwCgduWwctFy6gFEfLwDBIZ-S5ZnrE27tkLs95m-bsLOnIeWNxXzo3C7YVrnYGlQeHRcajQEMRh41OFfHVsUji55ZLqdScoh_PAb2JMyehFlmrLCC_wDIu16L |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.23638/DMTCS-19-4-4 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science |
| EISSN | 1365-8050 |
| ExternalDocumentID | oai_doaj_org_article_b7cfb9a7dac348a990ae95638cc2fb7f 10_23638_DMTCS_19_4_4 |
| GroupedDBID | -~9 .4S .DC 29G 2WC 5GY 5VS 8FE 8FG AAFWJ AAYXX ABDBF ABJCF ABUWG ACGFO ACIWK ACUHS ADBBV ADQAK AENEX AFFHD AFKRA AFPKN AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS B0M BAIFH BBTPI BCNDV BENPR BFMQW BGLVJ BPHCQ CCPQU CITATION EAP EBS ECS EDO EJD EMK EPL EST ESX GROUPED_DOAJ HCIFZ I-F IAO IBB ICD ITC J9A KQ8 KWQ L6V M7S MK~ ML~ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PV9 REM RNS RSU RZL TR2 TUS XSB ~8M |
| ID | FETCH-LOGICAL-c1434-9cd06a84d357848c102253c8f94600a73e1fa00978f356c0b35ceaf8a8400eca3 |
| IEDL.DBID | DOA |
| ISSN | 1365-8050 |
| IngestDate | Mon Nov 10 04:30:22 EST 2025 Sat Nov 29 08:06:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | special issue FCT'15 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1434-9cd06a84d357848c102253c8f94600a73e1fa00978f356c0b35ceaf8a8400eca3 |
| OpenAccessLink | https://doaj.org/article/b7cfb9a7dac348a990ae95638cc2fb7f |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b7cfb9a7dac348a990ae95638cc2fb7f crossref_primary_10_23638_DMTCS_19_4_4 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-10-13 |
| PublicationDateYYYYMMDD | 2017-10-13 |
| PublicationDate_xml | – month: 10 year: 2017 text: 2017-10-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete mathematics and theoretical computer science |
| PublicationYear | 2017 |
| Publisher | Discrete Mathematics & Theoretical Computer Science |
| Publisher_xml | – name: Discrete Mathematics & Theoretical Computer Science |
| SSID | ssj0012947 |
| Score | 2.0472898 |
| Snippet | A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| SubjectTerms | computer science - data structures and algorithms |
| Title | Longest Gapped Repeats and Palindromes |
| URI | https://doaj.org/article/b7cfb9a7dac348a990ae95638cc2fb7f |
| Volume | 19 no. 4, FCT '15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BFMQW dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: M7S dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1365-8050 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012947 issn: 1365-8050 databaseCode: PIMPY dateStart: 19970101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQYYCBRwFRHlUG1M1qEl9re4RCAamtIlFQmSLnbEssadUUfj92klZlYmG1bMv6Tr77zo_vCLnNwOt4AVKtNFIwLPIHTZZmDNwQ7gJo-UPufcQnEzGbyWSr1Jd_E1bJA1fAdTOONpOKa4UMhHLOUxnH6ZlAjG3Grfe-IZfrZKq-P4gl8EpRM2aub_dhPB280khSoPArAm0J9ZcRZXhMDmsqGNxVSzghOyZvkqN1mYWg3nVNcjDeSKsWp6Qzmuf-Tih4UouF0YFj0M6dFoHKdZA4Ul0JEBRn5G34OB0807rYAUVHWYBK1GFfCdBefgYE-kysx1BYCY6TKM5MZFX568KyXh_DjPXQKCvckDA0qNg5aeTz3FyQIALeR8azWKMEo1E5ChKCinvCchsL1SKdNQDpotK0SF0uUCKVlkilkUwhhRa59_BsOnkp6rLBGSitDZT-ZaDL_5jkiuzHPp76pyTsmjRWyy9zQ_bwe_VZLNul7dtkN3kZJx8_GUi2Kw |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longest+Gapped+Repeats+and+Palindromes&rft.jtitle=Discrete+mathematics+and+theoretical+computer+science&rft.au=Dumitran%2C+Marius&rft.au=Gawrychowski%2C+Pawe%C5%82&rft.au=Manea%2C+Florin&rft.date=2017-10-13&rft.issn=1365-8050&rft.eissn=1365-8050&rft.volume=19+no.+4%2C+FCT+%2715&rft.issue=special+issue+FCT%2715&rft_id=info:doi/10.23638%2FDMTCS-19-4-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_23638_DMTCS_19_4_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1365-8050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1365-8050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1365-8050&client=summon |