Longest Gapped Repeats and Palindromes

A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ o...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete mathematics and theoretical computer science Ročník 19 no. 4, FCT '15; číslo special issue FCT'15
Hlavní autoři: Dumitran, Marius, Gawrychowski, Paweł, Manea, Florin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Discrete Mathematics & Theoretical Computer Science 13.10.2017
Témata:
ISSN:1365-8050, 1365-8050
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A gapped repeat (respectively, palindrome) occurring in a word $w$ is a factor $uvu$ (respectively, $u^Rvu$) of $w$. In such a repeat (palindrome) $u$ is called the arm of the repeat (respectively, palindrome), while $v$ is called the gap. We show how to compute efficiently, for every position $i$ of the word $w$, the longest gapped repeat and palindrome occurring at that position, provided that the length of the gap is subject to various types of restrictions. That is, that for each position $i$ we compute the longest prefix $u$ of $w[i..n]$ such that $uv$ (respectively, $u^Rv$) is a suffix of $w[1..i-1]$ (defining thus a gapped repeat $uvu$ -- respectively, palindrome $u^Rvu$), and the length of $v$ is subject to the aforementioned restrictions. Comment: This is an extension of the conference papers "Longest $\alpha$-Gapped Repeat and Palindrome", presented by the second and third authors at FCT 2015, and "Longest Gapped Repeats and Palindromes", presented by the first and third authors at MFCS 2015
ISSN:1365-8050
1365-8050
DOI:10.23638/DMTCS-19-4-4