Spectrum of the Riemann-Hilbert-Poincaré problem for analytic functions

We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Complex variables, theory & application Ročník 50; číslo 7-11; s. 497 - 505
Hlavní autoři: Dai, Dao-Qing, Liu, Ming-Sheng
Médium: Journal Article
Jazyk:angličtina
Vydáno: Taylor & Francis Group 10.06.2005
Témata:
ISSN:0278-1077, 1563-5066
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation property. Moreover, the multiplicities of eigenfunctions for different eigenvalues are not necessarily the same even when the eigenvalues are small.
ISSN:0278-1077
1563-5066
DOI:10.1080/02781070500086552