Spectrum of the Riemann-Hilbert-Poincaré problem for analytic functions
We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation p...
Uloženo v:
| Vydáno v: | Complex variables, theory & application Ročník 50; číslo 7-11; s. 497 - 505 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Taylor & Francis Group
10.06.2005
|
| Témata: | |
| ISSN: | 0278-1077, 1563-5066 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation property. Moreover, the multiplicities of eigenfunctions for different eigenvalues are not necessarily the same even when the eigenvalues are small. |
|---|---|
| ISSN: | 0278-1077 1563-5066 |
| DOI: | 10.1080/02781070500086552 |