Spectrum of the Riemann-Hilbert-Poincaré problem for analytic functions

We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation p...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Complex variables, theory & application Ročník 50; číslo 7-11; s. 497 - 505
Hlavní autori: Dai, Dao-Qing, Liu, Ming-Sheng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Taylor & Francis Group 10.06.2005
Predmet:
ISSN:0278-1077, 1563-5066
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation property. Moreover, the multiplicities of eigenfunctions for different eigenvalues are not necessarily the same even when the eigenvalues are small.
ISSN:0278-1077
1563-5066
DOI:10.1080/02781070500086552