Spectrum of the Riemann-Hilbert-Poincaré problem for analytic functions
We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation p...
Uložené v:
| Vydané v: | Complex variables, theory & application Ročník 50; číslo 7-11; s. 497 - 505 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Taylor & Francis Group
10.06.2005
|
| Predmet: | |
| ISSN: | 0278-1077, 1563-5066 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | We study the Riemann-Hilbert-Poincaré boundary value problem for analytic function. This problem will lead to inhomogeneous Fuchsian differential equations. We find that its spectrum is not characterized by the smoothness of its coefficient on the boundary but by its interior analytic continuation property. Moreover, the multiplicities of eigenfunctions for different eigenvalues are not necessarily the same even when the eigenvalues are small. |
|---|---|
| ISSN: | 0278-1077 1563-5066 |
| DOI: | 10.1080/02781070500086552 |